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FOREWORD 

This  is  the  final  report of the  contract  program  which 

started  October 1, 1963 and  continued,  by  supplemental  ex- 

tensions,  through  June 30,  1965. The  report  was  prepared by 

the  Materials  Technology  Branch,  Semiconductor  Reserach  and 

Development  Laboratory,  Semiconductor  Components  Division, 

Texas  Instruments  Incorporated,  Dallas,  Texas  on  NASA  contract 

No. NAS 5-3559. 

Mr.  Kenneth  Bean  was  the  project  engineerr  principal 

contributors to the  research  studies  were  Dr.  Earl  Alexander 

and Mr. Stacy  Watelskir  theoretical  analysis  as  given  in 

Appendix I was  provided  by  Dr.  Murray  Bullis  and  Dr.  Walter 

Runyan.  Others  contributing to the  research,  computer  routines, 

and  report  preparation  were  Mr.  Paul  Gleim, Mr. Jimmie  Sherer, 

Mr. Ronald  Wackwitz,  and Mr. Richard  Yeakley.  All  cells  were 

fabricated  under  the  supervision of Mr. Robert  Cole  and Mr. 
Raymond  Vineyard of the  General  Products  Department,  Semi- 

conductor  Components  Division.  Mr.  Robert  Haire,  Mr.  Richard 

Kinsey,  and Mr. Rick  Strecker  were  contract  administrators. 
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DEVELOPMENT OF EPITAXIAL STRUCTUWS 

for 

RADIATION  RESISTANT  SILICON SOLAR CELLS 

ABSTRACT 

Experimental  silicon  drift-field  solar  cells  were  produced 

by  means  of  advanced  epitaxial  and  diffusion  technology.  Three 

different  approaches  were  used  for  producing  the  drift-field 

structures  and  two  different  procedures  were  used  for  cell  fabri- 

cation.  Drift-field  structures  built  by  a  single-epitaxial- 

deposit-and-diffusion  technique  and  fabricated  into  cells  by  an 

improved  procedure  represent  the  best  combination  of  methods  by 

which  a  drift-field  solar  cell  may  be  produced.  Excellent  repro- 

ducibility  of  cell  characteristics  and  over-all  high  process  yields 

establish  the  production  feasibility of this  procedure  to  build 

drift-field  solar  cells. 

A variety  of  drift-field  structures  were  made,  some  of  which 

produced  cells  more  resistant  to  bombardment  by  one  MeV  electrons 

than  are  ordinary  n-p  solar  cells. A number  of  sainple  cells 

fabricated  near  the  end of the  contract  period  from  near-optimum 

drift-field  structures  exhibited  high  current  values in the  un- 

irradiated  state.  On  the  basis of a theoretical  analysis  of 
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drift fieldswhichwas made,  these  sample  cells  when  irradiated 

should show  superior  radiation  resistance. 

The  theoretical  analysis,  which  took  into  account  the 

variation  of  mobility  with  concentrations,  suggests  that  the 

ratio of the  impurity  concentrations  in  the  drift  field  should 

not  exceed  three  cl-ders of magnitude.  Furthermore,  the  width 

of the  drift-field  probably  should  not  exceed 25 microns. Low 

carrier  lifetime  prevents  improvement  of  over-all  collection 

efficiency  by  use  of  significantly  thicker  deposited  layers. 

Longer  wave  length  response  was  enhanced  in  some  instances by 

wider  drift  fields  and  by  higher  initial  lifetime (e.g. by  use 

of Lopex  silicon or gettering),  but  the  available  power  after 

irradiation  apparently  was  not  improved. I 
* 

A method  developed  for  determining  the  concentration  profile 

in  a  drift-field  structure  represents  an  important  advance in 

cell  evaluation. 

~~ 

* 
Texas  Instruments  Incorporated  Tradename. 
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I. 

A. _o_l_7j ective, 

ThE  objective  of  this  program  was  the  development  of 

technology,  supported  by  working  models,  to  prove  the 

production  feasibility of an  improved  radiation-resistant 

silicon  solar  cell.  The  improvement  in  radiation  re- 

sistance  was to be  achieved by building  in,  by  means  of 

silicon  epitaxial  techniques,  a  drift  field  on  the  base 

side of the  cell  junction.  The  drift  field  was  to  be  of 

sufficient  magnitude to reduce  substantially  the  effect of 

lifetime  degradation,  due  to  radiation  damage,  on  cell 

efficiency. 

B. Scope of Work- 

Achievement  of  the  program  involved  development  and 

evaluation of various  processing  and  measuring  techniques. 

A  large  number of epitaxial  depositions  were  made,  using  the 

various  apprcaches  described in III.C., to provide  material 

for the  experi.ments  with  diffusion,  glassy-layer  gettering 

techniques,  and  measurements,  and  for  deliverable  sample  solar 

cells. This report  discusses  these  various  experiments  and 

processing  techniques.  Sample  solar  cells  were  fabricated, 

insofar as it  was  possible,  using  the  standard  fabrication 

process so that  the  epitaxial  cells  could  be  directly  com- 

pared to  standard  cells  without  the  drift  field.  Cell  charac- 

teristics  are  given  for  the  various  sample  cells.  During 

the  course of the  contract  period,  a  concentration  gradient 

profiling  method was developed.  Description  and  uses of 



this  method  are  found  in  1V.B.  Fairly  late in the  contract 

period,  it  became  feasible to make  an  analysis  of  drift  fields 

allowing  for  mobility  variations  with  impurity  concentration. 

This  theoretical  work,  showing  the  influence  of  mobility 

variations on drift  field  enhancement in  silicon  junction 

devices,  is  attached  as  Appendix I and  referred to  in 11. 

11. THEORY 

The  damage  introduced  in  solar  cells  by  high  energy  electron 

and  proton  bombardment  results  primarily  in  lifetime  degradation. 

Reduced  lifetime in turn  lowers  the  number  of  photo-generated 

carriers  that  diffuse to the  junction  and  contribute  to  cell 

output  current  before  recombination. If  a  proper  polarity 

electric  field  is  present  normal  to  the  p-n  junction,  a  carrier 

will  move  with  a  higher  velocity  than  by  diffusion  alone.  Hence, 

with  such a field,  carriers  can  still  be  collected  even  if  their 

lifetime  has  been  materially  reduced. 

An analysis of drift  fields  was  carried  out  during  the  contract 
period  and  is  included  in  this  report  as  Appendix I. The  analysis 

allows  for  the  variation of carrier  mobility  with  impurity  concen- 

tration.  With  the  exception  noted  in  the  appendix,  all  previous 

analyses  have  neglected  the  mobility  variation.  Included  in 

Appendix I, which  is  entitled  "Influence of Mobility  Variations 

on  Drift  Field  Enhancement  in  Silicon  Junction  Devices,"  are 

the  means  by  which  drift-field  structures  can  be  optimized to a 

specified  design  value of electron  lifetime  (or  integrated  flux 

density). 

2 



111. EPITAXIAL  DEPOSITION 

This  section  discusses  the,experimental  procedures 

and  equipment  used in building  the  epitaxial  drift-field 

structures. 

A. Material,  Apparatus,  and  Procedures 

1. Substrate  Preparation 

Two separate  procedures  were  used,  depending  on  the 

fabrication  procedure  being  followed  (See  VI). 

a. For  Fabrication,  Procedure I 

Boron-doped  silicon  crystals  approximately 2.5 cm 

in  diameter  were  grown  in  the [111] direction  and  sliced 

parallel  to  the (111) plane.  The  slices, 0.058 cm  thick, 

were  cut to 1-cm  x  2-cm  rectangles  and  lapped  on  both  sides 

to  a  thickness  of 0.048 cm  using 1800 grit  aluminum  oxide 

abrasive.  The  rectangular  blanks  were  then  mounted  on  one 

side  and  etch  polished  with  a  planar-type  etchant  (modified 

CP-4) to  a  final  thickness of 0.038 cm. In a few  instances 

the  blanks  were  polished  mechanically  rather  than  by  a 

chemical  etch. 

b.  For  Fabrication,  Procedure I1 

Boron-doped  silicon  crystals  were  grawn  in  the 

[111] direction,  centerless  ground  to 3.020 cm,  and 

sliced  parallel to the (111) plane.  The  slices, 0.056 cm 

thick,  were  lapped  on  both  sides  (as  above)  and  chemically 

polished in a rotating  teflon  cylinder to a  final  thickness 

of 0.031  cm.  These  round  substrates  were  trimmed  to  standard 

1 cm x 2 cm  cells  after  contact  application  (See VI). 

+ -000 
- .005 
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2. Deposition  Apparatus  and  Conditions 

Epitaxial  deposition  of  silicon  was  accomplished 

by the  reduction  in  hydrogen  of  high-purity  silicon  tetra- 

chloride  at  temperatures  from 1180" to  125OOC  (emissivity- 

uncorrected  pyrome-ter  readings) . A  deposition  cycle'  con- 

sisted  of  loading  the  substrate(s)  into  the  reactor,  purging 

the  reactor  with  helium  or  forming  gas,  heating  the  substrate(s) 

in hydrogen  to  about  12OO0C,  etching*  a  few  microns of silicon 

from  the surfxe with  a  mixture  of  hydrogen,  hydrogen  chloride 

and/or  silicon  tetrachloride,  depositing  the  required  thickness 

of  silicon,  cooling  the  reactor  and  contents  in  hydrogen  to  near 

ambient  temperature,flushingthe  reactor  with  helium  or  forming 

gas,  and  removing  the  epitaxial  slices. 

Both  horizontal  and  vertical  epitaxial  reactors 

were used.  The  flow  system  for  the  reactors  is  shown  in 

the  photographs of Figure 1 and  indicated  schematically  in 

Figure 2. Both  systems  are  equipped  with  variable  leaks  for 

regulation  of  flow  of  the  dopant  gas  (diborane  in  hydrogsn) 

into  the  reactant  gas  stream. 

Epitaxial.  silicon  growth  rates  were  nominally 

two  microns  per minllte. Thickness  and  resistivities of the 

epitaxial  layers were measured  as  described  in 111.~. 

B.  General  Considerations 

As indicated  in II., a  change  in  impurity  concen- 

tration of from  about  two to four  orders  of  magnitude  in  the 

* Vapor  etching  of  the  silicon  substrate  immediately  prior  to 
epitaxial  deposition  has  been shown' to  be  highly  desirable 
for  the  production  of  near-perfect  crystal  structures. 
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Epitaxial  Control  Panel and  Reactor 
Enclosure 

Gas Flow Metering  Portion of 
Control  Panel 

Fig. 1 
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base  region  must  occur  within  a  short  distance of the 

junction.  Epitaxial  techniques  are  suited  for  producing 

such  changes  in  concentration  within  a  crystal,  but  there 

are  some  limitations  that  must  be  observed. 

Doping  concentrations  available  vary  from 

'between 1014 to 1015 impurity  atoms/cc of  silicon  (determined 

by  the  puri1.y of the  starting  silicon  tetrachlaride  and 

reactor  and  feed  system  cleanliness) to between lo1', and 

lo2' atoms/cc,  determined  by  the  ability to  grow  .high 

perfection  films. 

Impurity  adsorption in the  growth  chamber  and 

feed  lines  makes  it  somewhat  difficult to decrease  the  concen- 

tration  during  a  reasonable  length  growing  cycle by more  than 

two  orders  of  magnitude  (See  Fig. 3a). The  reverse  process, 

that  of  starting grmth at  a  very  low  impurity  concentration, 

has  only  the  time  constant  associated  with  the  time  to  trans- 

port  the  impurity  element  from  a  meterin3  valve  to  the  growth 

site. 

Various  competing  reactions  occurrj.ng  during 

deposition,  which t r a n s p o r t  silicon  and  impurities  previously 

deposited  (or from the  substrate)  back  into  the  growth  chamber 

often  make  production  of  lightly  doped  films  on  heavily  doped 

substrates  difficult.  The  severity  of  the  problem,  shown 

schematically in Fig.  3b,  depends  somewhat  on  the  type  of 

impurity  used  and  the  abruptness  of  the  desired  transition. 

Since  epitaxial  silicon  normally  is grown at 

temperatures  from  llOOo to 13OO0C,  appreciable  diffusion  of 

the  impurities  occurs  during  deposition,  which  can in many 

cases  alter  the  concentration  profile  (see  Fig. 3c). For 
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the  present  objective,  the  development  of  an  epitaxial 

drift-field  base,  this  did  not  pose  a  problem,  since 

allowance  could  be  made in the  subsequent  drift  diffusion 

step (IV.A) . 
The  problem  of  determining  the  concentration 

profile  actually  occurring in the  structure  is  involved  and 

subject  to  error. A significant  advance,  however,  in  determin- 

ing  the  proEi1.e  is  reported in 1V.B. 

Epitaxial  films  of  thicknesses  from  less  than 

one  micron to more  than 100 microns  can  be  grown,  but  the 

number  of  crystalline  imperfections  in  the  thicker  deposits 

usually  is  higher. 

Carrier  lifetime in the  deposited  film  is 

difficult  to  measure,  but  normally  is  quite  low,  e.g.,  be- 

tween 0.1 to 1.0 microseconds.  The  cause  of  this  low  lifetime 

in  epitaxial  materials  is  not  fully  understood,  but  may  be 

attribut.ed in part. to accidental  transition  metal  doping. 

Threta specific  means  which wcre used t o  introtlu2e d r i f t  

fie1.d~  into  epitaxial  layers  will  now  be  considered. Al- 

though  the  resistivities  and  thicknesses of the  layers  in 

the  examples do not  correspond  to  the  "optimum"  fields 

described  in 11, the  examples  are  nonetheless  illustrative 

of  the  techniques  by  which  the  drift  fields  may  be  made. 

9 



I I 111 I 

1.  Epitaxial  Deposition  Followed  by  Diffusion 

If a substrate  thick  enough  for  mechanical  strength 

(100 to 150  microns or thicker)  with an initial  doping  concen- 

tration  level  of 4 x lo1' atoms of boron/cc  of  silicon 

(= 0.003 R-cm)  has  a 30  micron  layer  of  silicon  with 

1.5 x  lOI5  boron  atoms/cc  (9R-cm)  added to  it,  the 

concentration  profile  after  a  fifteen  minute  growing  cycle 

at  125OOC  is as shown  in  Fig.  4a  and  is  due  only  to  diffusion. 

Calculation  of  the  doping  profile  as  a  result  of 

diffusion  from  a  concentration  step  (with  the  same  impurity 

element  on  both  sides  of  the  step)  proceeds  from  an  equation 

of  the  form: 2 

N(x,t) =$' + No )+to 2 ".).rf (L) 2.G 

where N and  N  are  the  concentrations on either  side  of 
the  step, - + x  is  the  distance  from  the  step,  t  is  the 
diffusion  time, D is  the  diffusion  coefficient  for  boron  in 

silicon,  and  the  last  factor  denotes  the  error  function  of 

the argument (x/25t) . 

0 1 

Now,  if  an  additional 7.5 hours  heating  cycle  at 

125OOC  is  added to the  growing  cycle,  the  profile  assumes  the 

form  shown  in  Fig.  4b. By  this  time  the  substrate  impurities 

have  diffused  out  nearly  to  the  surface  and  are  distributed 

over  a 30 micron  distance. An n-type  diffusion  from  the  front 

then  produces  a  cell  with  approximately  the  required  gradient. 

By  far  the  majority  of  cells  produced in this  contract  (See 

VII.A) were  prepared  by  this  simple  approach  of  a  single 

epitaxial  deposition  followed by diffusion, 
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2. Two Epitaxial  Layers  Followed by Diffusion 

Another  approach,  somewhat  more  complex, 

involves  the  use  of  two  epitaxial  reactors  and  a  heavily 

doped  substrate.  Here  the  substrate,  doped to about 

0.001 R-cm,would  have  a 0.1 R-cm  layer  deposited  on  it, 

and  then,  after  removal to another  reactor,  would  have 

an  additional  layer  of  about 10 R-cm  material  deposited 

thereon.  The  concentration  profile,  for  the  case  of  two 

25-micron,  thirty-minute  deposits  and  a  three  hour  diffusion, 

all  at 125OoC, is  shown  in  Fig. 5. Such  a  profile  is  an 

approximation to the  distributions  which  are  obtained  by 

the  first  approach  (III.C.l.).  This  procedure  has  the 

virtues  of  still  being  relatively  simple,  much  faster  than 

a  diffusion  from  the  backside,  and  avoiding  the  problem  of 

dope  hangover  due  to  adsorption  on  reactor  walls (1II.B.). 

Where  the  substrate  is  not so heavily  doped,  and in  certain 

other  instances,  it  is  possible to make  the  desired  two- 

layer  structure  by  using  only  a  single  epitaxial  reactor. 

For  such  cases,  following  the  first  deposition,  a  few 

minutes  of  "purging"  in  hydrogen  helps  sweep  away  the  dopant 

in the  reactor  prior to the  second  deposition.  Several  cells 

were  made  from  epitaxial  structures  formed  by  this  two-layers- 

and-diffusion  approach. 

3 .  Dope  Programing  During  Epitaxial  Deposition 

with  sufficiently  short  feed  lines,  carefully 

designed  deposition  chamber,  and  a  reasonable  (but  lower) 

deposition  temperature,  impurity  concentration  apparently 

can  be  programed  down  over  about  four  orders  of  magnitude 

during  epitaxial  deposition.  Figure 1 of  III.A.2.  showed 
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a  feed  system  which  has  short  lines  and  a  dope  valving 

system  capable  of  being  motor  driven to change  the  dope 

gas flow over .the required  number  of  orders  of magnitude. 

For  various  reasons,  this  third  approzch was 

never  fully  impl.emented in  this sol-ar :ell contract.  How- 

ever,  experience  gained  from  some  otherwise-unrelated 

epitaxial  work in the  laboratory  permit  the  discussion  of 

relative  merits  of  the  various  epitaxial  approaches  in  the 

next  section.  Approximations  to  this  third  approach  were 

made  by  manually  adjusting  dopant  flow  in  stepwise  decrements 

during  deposition.  Figure  6a  shows  a  ten-step  adjustment 

of  dope  gas  flow  during  a 40 micron  deposition,  with  Fig. 6b 

the  desired  gradient  achieved  by  diffusion  during  the 

deposition.  Figure  6c  shows  a  profile  which  sometimes  occurs 

as  a  result  of  the  "dope  holdover"  discussed  in 1II.B. 

Several  deposits,  of  thickness  from 40 to 80 microns,  were 

made  by  this  approach. 

4. Relative  Merits  of  the  Three  Selected  Apprcac'?;yss 

Although  each  of  these  three  (and  other)  approaches 

may  prove  feasible  for  building-in  a  drift  field,  certain 

approaches  are to be  favored  on  economic  and  practical  bases. 

At  the  beginning  of  the  contract,  when  it  appeared  desirable 

to  maximize  the  number  of  orders  of  magnitude  difference  in 

dopant  concentration  from  substrate to near  the  surface,  the 

second  approach  above  (two  layers  and  diffusion)  seemed 

attractive  for  the  reasons  cited.  For  thicker  deposits, e.g. 

above 40 microns,  approach  three  (programed  doped)  seemd  to 

be  favored  on  the  basis  of  reduced  diffusion  times.  However, 

since  the  optimum  drift  field  (see I1 and  Appendix I, section 

V) is  probably no wider  than 25 microns  and  consists  of an 

14 
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impurity  ratio of EG more  than  three  orders  of  magnitude, 

the  attractiveness  of  approaches  two  and  three  are  reduced 

relakive to the  principal  advantagesof  approach  one. 

TO maintain  satisfactory  quality  control 

(reproducibility)  from  one  epitaxial  run to the  next  when 

using  approaches  two  and  three  would  require  extensive 

measurement  tine  for  representative  samples  extracted  from 

the  various  runs,  Although  the  method  developed  for  determin- 

ing  the  concentration  profile (1V.B.) would  provide  the 

necessary  information,  the  method  is  not  a  short,  routine 

measurement. 

An  additional  comment  relative to the  programed 

dope  approach  is  in  order.  Experiments  made  (outside  the 

realm  of  this  contract)  with  a  motor-driven  valving  system 

for  regulation of dope  gas  suggest  that  while  the  shape  of  the 

dopant  profile  and  the  ratio  of  the  impurity  concentration  at 

the  end  points  may be  easily  reproduced,  the  absolute  value 

of the  impurity  concentrationsat  the  end  points  may  be  dis- 

placed  either  both  higher  or  both  lower  from  one  run  relative 

to  another.  For  example,  in  attempting to repeat  the  profile 

shown  in  Fig.  7a,  the  lack  of  absolute  resetability  of  the 

valve  may  bring  about  a  profile  represented  by  either  curve 

b  or c. There  remains  the  possibility  of  obtaining  a  profile 

curvature  as s'hown in  Fig,  6c  at  the low dopant  concentrations. 

The  use of a  programed  dope  arrangement  is  advocated only for 

those  applications  for  which  ordinary  epitaxy  and  diffusion 

cannot  supply  the  required  concentration  profile. 

16 

I 



I 7 Itt 
)ope Programing l-t / - I  ity of - Fig. 2producibil 

During  Deposition 

I 

I 

I 

a 

- 10 10 20 30 40 

Distance,  microns 

17 



For  the  formation  of  drift-field  structures 

for  solar  cells, use of approach one, the  single ep ' i t ax j a l  

layer followed by  diffusion,  is to be fav-0rc.c: on La.sL3:: 

of  its  simplicity  and  its  reproducibi.lity.  Should  some- 

thing go wrong  during  the  deposition  step,  conventional 

measurements of epitaxial  layer  thickness  and  resistivity 

permit  rejection  of  "out-of-spec"  silicon  slices.  The  two 

principal  variables  in  the  subsequent  diffusion  operation, 

time  and  temperature,  are  readily  controlled.  While  the  time 

require3 to diffuse  the  substrate  impurities  out to the  sur- 

face  is  indeed  long  (e  .g.  for N /N = 1000 and  field  width = 

25  microns,  time FZ 28 hours  at  1250°C),it is  by  no  means 

economically  prohibitive. 

0 1  

D. a 
All epitaxial  slices,  prior to their  introduction 

into  any  subsequent  operation,were  evaluated  for  layer  thick- 

ness,  layer  resistivity,  and  surface  appearance.  Results of 

these  evaluations  determined  the  conditions  necessary  for 

diffusion  and  other  operations. 

1. Thickness  Evaluations 

Three  techniques  are  available  for  layer  thick- 

ness  determination  prior  to  gradient  diffusion.  These  are 

the  use  of  infrared interfer~metery~'~, stacking  fault 

size  measurement , and  bevel  lap  and  stain.  Thicknesses 
of  all  single  epitaxial  layers  (approach  one)  were  determined 

non-destructively  by  the  infrared  interferometer.  Thicknesses 

of  layers  formed  by  the  other  approaches  were  determined  by 

one  of  the  other  above  techniques  or  were  approximated  by  use 

of  an  epitaxial  pilot  run. 

5 
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2 .  Resistivity  Evaluation 

Resistivity  evaluation  of  the p/p+ epitaxial 

layer  as  grown  is  quickly  made by using  the  three-point 

probe  technique'  in  which  the  point  contact  diode  break- 

down  voltage of an  unknown  resistivity  sample  is  compared 

with  that  of a melt  grown  standard.  Equipment  used  for  the 

measurement  is  pictured  in  Fig. 8 .  The  validity  of  this 

evaluation  is  dependent  on (a) the  reproducibility  of a 

point  contact  diode,  and (b) the  assumption  that  the 

epitaxial  film  has a uniform  impurity  concentration  through- 

out  its  thickness.  The  layer  thickness  of a typical  sample 

was,  egg., 25 microns  and  had a resistivity  of 10 R-cm. Al- 

though  the  resistivity  of  the  layer  may  not  have  been 

absolutely  constant  throughout  its  total  thickness,  the fop 

15 microns  were  thought  to  be  relative  uniform.  This  thickness 

of uniform  resistivity  material  is  adequate  to allow a de- 

pendable  three-point  probe  measurement. (I f the  thickne r< s 

of the  epitaxial  layer is decreased  to a value less than 

the  width  of  the  space  charge  region  at  avalanche  breakdown, 

the  three-point  probe  is  no  longer  usable,) 

3 .  Surface  Appearance 

All epitaxial  layers  were  subjected  to a non- 

microscopic  examination  of  the  surface.  Use of a bright  light 

can  reveal  presence  of a "haze"  symptomatic of epitaxial 

system  leaks,  Epitaxial  slices  having  any  "haze",  slip, 

pitting,  poly-growth,  "orange  peel,"  or  "tetrahedra"  were 

generally  rejected  from  further  use.  During  epitaxial 

deposition  on  some  of  the  more  highly  doped  substrates, 

19 



Fig. 8 - Automatic  Point  Contact  Breakdown Equipment 
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numerous  growths  having  an  appearance  much  like  tetra- 

hedra  formed  on  the  surface.  This  phenomenon,  which 

resulted in pebble-grained  surfaces,  generally  increased 

in magnitude  with  the  increasing  doping  level  of  the 

substrates.  Figure 9 is  a 1090X magnification  of  a 

"tetrahedron"  on  a 0.002 R-cm  substrate. The  magnitude 

of  the  phenomenon,  which  could  not  be  correlated to the 

deposition  temperature,  is  attributed  both to dope  segre- 

gation  during  substrate  crystal  growth  and to subsequent 

substrate  preparation. 

IV. DRIFT  FIELD  FORMATION AND MEASUREMENT 

A. Diffusion 

Two of  the  three  approaches  described  in 1II.C. 

required  post-epitaxial  diffusion to grade  the  substrate 

impurities  through  the  epitaxial  layer  to  the  surface. 

Epitaxial  slices  were  separated  into  groups  according  to 

the  length  of  time  required  to  effect  the  desired  diffused 

structure.  Selections  of  the  diffusion  coefficient-time 

products  appropriate  to  the  desired  diffused  structure  and 

the  diffusion  temperature  were  facilitated  by  use  of  a  master 

curve7  keyed  to  the  diffusion  equation (III.C.l.). Diffusion 

constants  of Williams8 were  used  initially.  Profile  determi- 

nations  (see  next  section)  later  suggested  that  constants 

reported  by  Kurt2  and  Yee9  represented  more  accurately  the 

diffusion  of  boron in silicon  from  a  concentration  step. 

Thus  in  a  number  of  the  earlier  samples  submitted  to NASA, 

the  thickness  of  uniform  concentration  (undiffused)  material 
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adjacent  to  the  surface  was  greater  than  intended. 

Diffusions  were  made  in  a  globar-heated  furnace. 

The  epitaxial  slices  were  placed  in  a  quartz  boat  and  in- 

serted  into  the  furnace  heated  to  about  125OOC.  (The  exact 

temperature  was  chosen so as  to  make  the  removal  time  a 

convenient  one.)  A  steam  ambient  was  provided  during  the 

first  twenty  to  thirty  minutes  which  formed  an  oxide  about 

5,000A  thick.  This  prevented  the  silicon  surface  from  be- 

coming  pitted  by  any  impurities  in  the  high-temperature 

nitrogen  ambient  subsequently  provided.  At  the  end  of  the 

selected  diffusion  time,  the  material  was  removed  from  the 

hot  zone  effecting a quench  rather  than  a  slow  cool.  Re- 

moval  of  the  thermally-grown  oxide  with HF prepared  the 

epitaxial  material  for  cell  fabrication. 

0 

B. De~termination ~~ of ~~ Concentration  Profile 

In this  section  is  given  an  historical  account 

of  the  developmental  work  on  impurity  concentration  profile 

techniques.  Results  and  evaluations  of  the  various  approaches 

are  given  throughout  the  account. A portion  of  thi.s  work, 

describing  the  technique  in  its  final  form,  has  been  submitted 

for  journal  publication. 

Two techniques  are  known  which  could  possibly 
be  adapted to the  specific  problem  of  concentration  profiling. 

The. first i s  the  diode  voltage-capacitance  technique, 

requiring  the  fabrication of low  leakage  diodes  from  the 

diffused  epitaxial  slices. 

10 

The  calculated  resistivity  profile  after a 

twenty-two  hour  diffusion  at  120OOC  for  a  typical  sample 

(25  micron-thick, 10 R-cm  layer  deposited on a 0.008 S2-cm 

substrate)  is shown as  the  dotted  line  in Fig. 10. This 
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sclmp1.c was erraluated by the  diode  voltage-capacitance 

technique . t i c : :  ny :.:he equipment  shown in Fig. 11. The 

dep7.etio;l region at  breakdown  will  not  advance  through 

the  total  layer;  therefore, a stepped  surface was chosen 

so that  the  depletion  region  could be moved  into  different 

representative  concentrations.  The  surface  of  the  sample 

was  divided ints areas  which  were  selectively  etched, 

zfter  which l . 2 ~ 1  n-f diffusions  were  made  into  these  areas. 

Foilr small ohmic contacts  were  evaporated  in  each  area 

using  t.itanium and Kovar,  followed  by  a  soft  solder  dip 

(Fig. 12). Titanium,  Kovar,  and  solder  were  applied  to 

the  back of the  sample.  Each  contact  was  masked  and  the 

slice  etched  to  form  small  diodes.  The  profile  data 

obtained  from  blodes  measured  on  Step A (See  Fig. 10) 

should  be  reasonably  accurate, as the  concentration of the 

diffused  n+  layer  is  very  much  greater  than  that of the 

epitaxial  layer. The  measured  values  are  shown  as  the  solid 

curve in  the  Step A region,  and  it  is  seen  to  approximate 

the  shape of the  calculated  curve.  Results  of  diodes  measured 

in Steps B and C are  progressively  more in error  since  the 

j u n c t i o n  is no longer  between  a  heavily  doped  and  a  more 

lightly  doped  semicondutor.  Special  theoretical  considera- 

tion  must  be  made  for  such  specific  cases.  Step A furnishes 

usable  but  limited  data. 

The  second  technique  is  the  Incremental  Sheet 

Resistants Technique,  which  involves  incrementally  removing 

material. and measuring  the  sheet  resistance  of  the  remainder. 

In. order to prevent  reading  the  sheet  resistance  of  the low 

resistivity  substrate,  lapping  must  proceed  from  the  substrate 

25 



. . .  .* 

Fig- 11 - Diode  Voltage-Capacitance  Equipment, 
Included  are  Diode  Probe,  Capacitance 
Bridge,  Voltage  Source,  Voltmeter, and 
Curve  Tracer. 
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Fig. 12  Select ively  Etched Slice.  The 
s l ice  i s  shown a f t e r   g r a d i e n t  
d i f f u s i o n  and diode  contact ing.  
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s ide  toward  the  cpita.xial  surface.  Special  techniques 

must  be  employed for this  increnf?ntaI.  x-emc~val s o  as r c  t 

to destroy  the  increasingly  thinner  epitaxial  lzycr 5 y  

the  removal  technique  or  by  the  sheet  resistance  measure- 

ment.  Laboratory  experiments  have  shown  that  this  can 

best  be  done  by  lapping. 

Figure 13 shows an inline  four-point  probe 

array  which is fixed to the  epitaxial  layer  surface  by 

the  evaporation offour ohmic  contacts (100 mil  spacing), 

using  titanium  and  Kovar  followed  by  a  soft  solder  dip. 

A wire  is  secured to each  contact  prior to epoxy  potting. 

Values  of  sheet  resistance  readings  increase  very  slowly 

until  most  of  the  substrate  has  been  removed,  then  increases 

at  a  rate  dependent on the  concentration  profile  and  re- 

maining  layer  thickness.  This  technique  had  the  inherent 

difficulty  of not being  able  to  remove  uniform  thin  layers 

and  to  accurately  determine  the  thickness  of  the  remaining 

sample. 

Modifying  the incrementa.]. sheet  resistance  technique 

resulted  in  a  bevel  and  probe  procedure  which  gave  improved 

accuracy, A sample  is  mounted  with the epitaxial  layer  down 

on  a  precision  lapping  block.  Lapping  then  proceeds  through 

the  sample  at  a  specifisd  angle.  After  each  incremental  lap, 

sheet  resistance  readings  are  made  at  regular  intervals  down 

the  slope of the  lapped  surface  using an ac  four-point  probe, 

see  Fig. 14. Studies  of  this  method  thus  far,  invalved 

principally  with  the  mechanisms of the  mounting  and  lapping 

operations,  have  used  angles  down  to  nine  minutes  (tan a = 

-0026).  Resistivity  values in a  small  interval (X  -X ) = 

AX were  calculated  from 
1 2  

R1R2 *x 
p =x 

2 1  
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and  plotted  at X1-AX/2. R and R are  the  sheet 

resistances atx and X respectively. 
1 2 

1 2 

In order  to  facilitate  the  perpendicular  section- 

ing  of  the  beveled  sample,  the  technique  was  refined  such 

that  each  sample  is  secured to  a  silicon  blank  of  equal  size 

by  a  thin  epoxy  layer.  The  silicon  blank  provides  a  rigid 

support  for  the  sample  which  is  lapped  to  zero  thickness  at 

one  end.  (Fiq. 15) The  epoxy  provides  a  solid-subsurface  to 

prevent  the  probes  from  damaging  the  sample  at  the  thin  end, 

and  an  insulating  surface  for  the  sample  to  rest  on.  Sheet 

resistance  readings  are  made  at  ten  mil  increments  hori- 

zontally  along  the  two  centimeter  length  of  the  sample. 

Figure 16 shows  typical  measured  sheet  resistance  variation 

with  thickness  for  an  epitaxial  slice  which  has  not  been 

subjected  to  a  drift  field  diffusion. A comparison  of  the 

calculated  and  measured  concentration  profiles  for  a 59 

micron  thick, 4.4 R-cm  epitaxial  film  is  shown  in  Fig. 17. 

The  deviation  between  the  calculated  and  measured  curves  may 

have  been  the  result  of  an  undesired  tilt  (see  Fig. 15) in  a 

direction  perpendicular  to  the  intended  beveling  direction. 

A n o t h e r  source of error  may  be  the  improper  choice  of 

diffusion  constant  for  this  particular  set  of  epitaxial 

growth  conditions. 

Several  slices  which  had  been  given  their  drift 

field  diffusion  were  also  profiled.  Figure 18 is a comparison 

of  the  calculated  and  measured  sheet  resistance  versus  layer 

thickness  for  a  typical  sample. 
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A comparison of calculated  and  measured  concen- 

tration  profiles  is  shown  in  Figs. 19, 20,  and  21.  Each 

of  these  measured  curves  was  compared  with  calculated  curves 

whose fIj.?<’lision constant  was chosen for a  best  fit,  Figures 

19 and  20  represent  sam.ples  grown  in  one  run  and  diffuse? 

together.  The  value  of  their  optimum  diffusion const.a:-l: .>c-, 

2.0 x 10 cm  sec . This  value  is  the  same  as  that rc!- 
ported  by  Kurt2  and  Yee , The  drift  field  diffusion  times 

thus  far  had  been  calculated  on  the  basis  of D = 5 x 10 -12 2 cm :;ec ; 
-.. 1 

therefore,  the  thickness  of  uniform  concentration  (undiffused) 

material  was  actually  thicker  than  intended.  Figure 21 repre- 

sents  a  sample  grown  at  a  different  time  but  diffused 

simultaneously  with  samples  shown  in  Figs. 19 and  20. Its 

best  fit  diffusion  constant  is 1-0 x 10 -12 2 cm  sec . Sheet -1 

resistances  as  measured  on  all  samples  increased  more  rapidly 

than  expected  near  the  thin  end.  This  is  apparently  due to 

abrasion  damage  during  lapping  as  was  substantia.ted  by 

preparing  an  additional  sample  in  each of two  concentrations 

and  grinding  an  identical  angle  using a dismond grinding 

wheel  (which  is known to  produce  less  damage). Surfclcc 

roughness  comparisons  of  lapping  vs  grinding show maximw~ 

surface  excursions of 2 . 3 ~  and O.38$, respectively. Boron 

concentration  profiles  for  each  technique  in  each  range  are 

shown  in  Fig.  22, In  both  ranges  the  bevel  ground  samples 

gave  accurate  concentration  measurements  for  thinner  sample 

regions. Also, low  concentration  material  allowed  accurate 

measurements of thinner  sample  regions  than  high  concentration 

material  prepared  by  either  technique.  The  apparent  reason 

is the  greater  ease  of  transmitting  mechanical  damage 

(lapping or grinding) in  a  sample  which  already  has  its 

lattice  distorted  by  a  very  large  number  of  impurity  atoms. 

-12  2  -1 

9 

i 
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This  bevel  grind  and  probe  technique  has  the 

ability  to  measur?  the  true  concentration  in  these  ranges 

to  within 30% of its  real  value. 

The  problem of identifying a particular  sample 

thickness  at  an  exact  corresponding  probe  position  was 

solved  by  the  addition  of a two  mil  deep  groove  across  the 

silicon  support  slice  and  perpendicular  to  the  beveling 

direction.  The  sectioned  sampled,  shown  in  part  in  Fig. 23, 

permits  thickness  measurement  positions  to  be  referenced 

from  this  center  groove  even  if  both  end  reference  points 

are  damaged  in  sectioning.  Horizontal  reference  positions 

are  accurate  to  within 5.0 microns, 

The  support  slice is made  wider  than  the  sample 

so that  the  reference  groove  can  be  correlated  to a correspond- 

ing  four-point  probe  position  while  obtaining  the  raw  data. 

A computer  program  was  initiated  which  performs 

the  necessary  smoothing  of  raw  data,  makes  necessary  profile 

calculations,  and  graphically  presents  the  results.  Selection 

of the  smoothing  parameters  is  completely  automatic  and spurio!.l:: 

data  points  are  rejected.  Figure 24 is a computer  plotted 

representation of the  variation  of  sheet  conductance vs thickness 

for  raw  and  smoothed  data.  Rejected  data  points  are  indicated 

by  stars.  Figure 2 5  shows  the  variation  of  boron  concentration 
with  depth.  Agreement  at  the  end  points  is  excellent. 

V. GETTERING  EXPERIMENTS 

As mentioned  earlier,  carrier  lifetime in  the 

epitaxial  material,  apparently  either  with  or  without  extended 

high-temperature  diffusion,  is  quite  low.  The  cause of this 
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Fig. 24 - Computer-plotted Sheet 
conductance Profile 
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].ow 1-ifctime in t : j . , i  i .axial  material  is not fully  under- 

stood,  but  may bc  *ii-.tributed in  part  to  accidental 

transitioa  metal  da;ping.  Duffy,  et  all2  suggest  that 

these el.ernents (metallic  impurities)  are  initially  pre- 

sent  in  the  silicon  substrates  rather  than  being  introduced 

during  the  epitaxi21  and/or  diffusion  processes.  Thus, 

although  there  are  opportunities in  which  transition  metals 

may  dope  during  the  epitaxial  Frocess,  the  quantity  of 

metal  present  may be strongly  dependent  on  the  substrate 

crystal  growth  process. 

A  special  emphasis  was  placed  on  improving  carrier 

lifetime  by  "gettering"  of  metallic  impurities  from  the  cell 

base  region  after  other  high  temperature  process  steps.  This 

was  an  attempt  to  enhance  the  cell  efficiency,  particularly 

in the  long  wavelength  portion of the spectrum. 

Several.  variations  of  a  gettering  technique,  adapted 

from  Ing,  et  a1 , were  tried. A methanol  solution  of  boric 

acid was  painted  on  the  low  resistivity  side  of  the  epitaxial 

blanks  (after  the  diffusion  grading)  and t k  blanks  were  in- 

serted  into a furnace  tube  heated  in  air  ambient  to  allow  a 

glassy  layer to form.  Aftei-  one  or two 1-.lurs at  the  elevated 

temperature,  tbe  furnace  wa ' cooled to 600°C, the  slices  were 

taken  from  the  furnace,  and  after  the bo3:tlte glaze  was  removed, 

the  slices  were  ready  for  fabrication. 

13 

Removal  of  the  gettering  glaze  was,in  some  instances, 

a  real  problem.  Gettering  at l l O O ° C  supposedly  is  more 

effective  than  at  8OO0C,  but  the  glaze  formed  at  the  higher 

temperature  was  much  more  difficult to remove.  Concentrated 
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HF removed a glaze  formed  at 8OO0C, but  glazes  formed  at 

temperatures  of 900°, 1000°, and l l O O ° C  were only partially 

removed  by HI?. A refluxing  mixture  known'  to  attack  boron 

(50 cc H23, 2 cc H2S04, 10 cc HN03, 5 cc HC1) also was tried 

on  the  high  temperature  glazes, which  remained  virtually 

intact.  Glaze  removal  was  effected  on a good  portion  of 

the  cell  blanks  either  by  lapping  or  by  concentrated HF 

followed  by a planar  type  etchant. 

It  was  anticipated  that  gettering  action  (rate, 

effectiveness, etc.) in  lightly  doped  silicon,  for  which  there  are 

literature  data,  might  differ s~bstantiallyl~ from  gettering 

of  metal  impurities  from  heavily  doped  silicon,  such as in 

the  present  application.  For  this  reason,  gettering  from  the 

high  resistivity  epitaxial  side  of  the  slice  was  thought  to 

be  desirable.  Removal  of a glaze  on  this  side  by  lapping  or 

etching  of  the  silicon  would,  obviously,  remove  the  drift 

field,  Failure  to  remove  all  of  the  glaze  from  the  epitaxial 

side  would  alter  junction  diffusion  conditions  and  result  in a 

higher  cell  series  resistance.  Thus, an effective  glaze  re- 
moval  technique  which  removes a minimum of silicon  was  needed. 

A brief  steam  oxidation  at 85OOC interposed  between  two 

treatments  in  concentrated F€F effectively  removed  the  borate 

glaze  and  boron I' stain. I' 

A number of epitaxial  blanks  were  processed  through 

a gettering  operation  prior  to  fabrication.  Results  of  the 

experiments  are  given  in V I I .  

V I .  SOLAR CELL FABRICATION 

All cells  described in this  report  were  fabricated 

in  Texas  Instruments'  solar  cell  developmental  laboratory. Two 
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separate  procedures  were  used. 

Procedure I, which  was  used  for  the  first 

seventy  sample  cells  shipped to NASA, consisted  of  pro- 

cessing  1-cm x 2-cm  rectangular  epitaxial  slices  through 
the  fabrication  steps. 

Several  problems  arose  during  fabrication  as  a 

result of the  epitaxial  structures  not  conforming to the 

standard  production  blank  size.  For  example,  the  epitaxial 

deposition  would  add  silicon  not  only to the  top  surface 

but to the  edges. In addition,  for  thick  deposits  (several 

mils)  edges  became  rough  where  the  slices were separated 

from  the  epitaxial  reactors'  graphite  susceptor  after 

deposition.  The  epitaxial  slices  then  required  a  rather 

laborious  edge-lapping  operation  to  remove  the  roughness 

and  decrease  the  lateral  dimensions. In most  cases,  slices 

subjected to this  operation  were  undersized  when  ready  for 

fabrication.  Frequently,  excess  metal  from  the  contact 

evaporation  step  would  remain  on  the  edges  of  the  cells 

after  fabrication,  and  thus  partially  short  the  structure, 

Because  of  these  difficulties,  the  fabrication  results  were 

quite  variable  for  many  cells. 

Procedure 11, used  for  the  last  thirty  sample 

cells,  processed  round  epitaxial  slices  through  contact 

application,  trimmed  the  material to standard  size  (two 

1-cm x 2-cm  cells  per  slice), and then  applied  the Si0 coat- 

ing, Use of Procedure 11, similar to that  used  by  Smith, 

et all5,  effectively remwed most of the  difficulties 

associated  with  the  first  procedure, 
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Because  of  the  experimental  nature  of  these 

cells,  they  were  not  quality  control  inspected to the 

rigid  production  specifications.  Thus,  sample  cells 

shipped  may  not  necessarily  have  met  all  usual  speci- 

fications  such  as  size,  coating,  contact  adherence,  etc. 

All sample  cells,  however,  were  nominally  the  standard 

1-cm x 2-cm size,  mostly  with  a  lateral  5-grid  geometry 

and  an  approximately 1.8 cm  active  area. 2 

VII. EPITAXIAL FU3SULTS AND CELL  CHARACTERISTICS 

A .  Epitaxial  Structures  Formed 

Epitaxial  depositions  were  made  using  the 

approaches  described in 111. Substrate  resistivities  ranged 

from 0.002 to 0.20 R-cm,  but  were  generally  from 0.006 to 

0.008 R-cm. The  silicon  substrates  were  in  every  case  from 

boron-doped,  p-type  crystals. 

The  substrates  were  cut  from  one  of  two  kinds of * 
silicon  crystals,  Czochralski  and  Lopex . One of  the  principal 

differences  between  silicon  crystals  of  these  two  preparative 

methods  is  the  oxygen  content.  Whereas  Czochralski  material 

may  have  as  much  as 1 x 1OI8 atoms  of  oxygen  per  cm3  of 

silicon,  Lopex  silicon  has  less  than 1 x  atoms/cm . 
While  the  effects  of  oxygen-containing  defects  (arising  during 

irradiation  in  silicon)  on  minority  carrier  lifetime  and 

carrier  concentration  are  not  presently  known,  it  seemed 

appropriate  to  examine  cells  made  from  silicon  in  which  no 

* 3 

* Texas  Instruments  Incorporated  Tradename 



oxygen  was  present. It should  be  pointed  out  that  epitaxially 

deposited  silicon  may  have  appreciable  oxygen  content  due  to 

oxygen's  very  rapid  diffusion  from  the  substrate.  For  ex- 

ample,  the  diffusion  coefficient  for  oxygen  in  silicon is 

100 times  that ofboronin silicon  at 125OOC. Thus, to ensure 

no  oxygen in the  epitaxial  film  the  substrate  itself  must 

also  be  oxygen  free.  Approximately  one-third  of  the  epitaxial 

depositions  were  made  on  Lopex  substrates. 
* 

By  far  the  majority  of  epitaxial  drift-field 

structures  were  made  using  the  simple  deposit  and  diffusion 

approach  given  in I I I . C . l .  Epitaxial  layer  thicknesses 

ranged  from  as  low  as s ix  microns  to  as  much  as 75 microns. 

Resistivities of the  layers  ranged  from 0.4 R-cm  to  above 

30 R-cm,  but  were  generally  between  two  and  twenty  R-cm. 

Diffusion  conditions  ranged  from 3 to 1 6 2  hours  at  125OOC. 

B. Current-voltage  Characteristics 

Current-voltage  characteristics  were  measured  with 

the  solar  cell  developmental  laboratory's  standard  test 

equipment.  Three  tungsten  reflector-type  sealed  lamps  (150 

watt, 2800OK 2 50°K  color  temperature)  were  mounted  on 
swivels  and  fed  by a dc  power  supply.  Illumination  was  filtered 

through 3 cm  of  recirculating  deionized  water on a 1/4" plate 

glass  tray,  Solar  cell  temperature  was  controlled  by a water- 

cooled  test  block  at 26OC & 2OC. Intensity  was  set  for 100 

milliwatts/cm -I- 2 per  cent  (tungsten  equivalent  to  sunlight), 

Repeatibility  was  within 2 2 per  cent. 

2 

* Texas  Instruments  Incorporated  Tradename 
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. .  

Short  circuit current I open  circuit sc' 
voltage v , and maximum  per cent conversion efficiency 
(air mass one) were determined for all  cells fabricated 

from the  epitaxial material. In a  few  instances  dark 

reverse  currents  were measured to provide  a  measure of 

cell shunt resistance. 

oc 

One hundred sample solar cells containing drift 

fields were delivered to NASA for further evaluation. These 

cells  were selected to provide a representative cross  section 

of the  various epitaxial,  diffusion,  and other conditions used 

throughout  the contract. These conditions and current-voltage 

characteristics for the sample cells are enumerated in Tables 

I through VIII. Listed for each cell (either tabulated or 

in footnotes) are sample number, substrate preparation and 

resistivity, epitaxial layer thickness and resistivity, 

diffusion  time and temperature, gettering conditions (if 
used) I and values of Isc, VocI and maximum per cent efficiency. 

With but five exceptions, the sample cells had maximum 

efficiencies of 7.0 per  cent  or  better. Average maximum 

efficiency of cells delivered was 8.65 per cent. 

In section VI  was mentioned the fact that for the 

first seventy sample cells, fabricated by Precedure I, the 
fabrication  step could  not be considered a constant one. The 

problems with Procedure  I  were manifest in wide variations 
of electrical characteristics within  a group of cells  which 

hopefully had received similar pre-fabrication treatment. 

Lack  of reproducibility from one cell to another within a 
common  group frustrated efforts to  draw conclusions in 
many instances.  Thus, some  qualitative remark6 are made 
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TABLE I 

Characteristics  of  Sample  Cells  Delivered to NASA 

Solar  Epitaxial Epitaxial 
Cell  Film  Film 

~~ ~ ~ ~ ~~~~ ~~ ~ ~ ~ ~~ 

Cell  Characteristics 

# Thickness  Resistivity  ISC  voc Max% 
Diffusion  efficiency 

(microns) (R-cm) Hours  Temp O C ( I d  (VI 

1 

2 

3 

4* 

5 

6 

7 

8 

9 

10 

11 

12 

13 

28.4 

29.5 

26.8 

=2  5 

25.9 

25 .O 

16.2 

28.9 

25.9 

26.8 

27.3 

=2  5 

26.3 

3.2 

2.75 

2.75 

0 -59 

2.4 

3.5 

8.5 

5.2 

20.5 

1.4 

3.6 

2.6 

2.5 

25 .O 

25.0 

25 .O 

26.0 

16.5 

22 .o 

3.1 
26.5 

16.5 

22 .o 
16.5 

26.0 

16.5 

1200 

1200 

1200 

1200 

1200 

1200 

12 50 

1200 

1200 

1200 

1200 

1200 

1200 

40.1  .542 

41 .O -550 

40.7 .551 

36.3 .556 

38.1 .532 

39.1 ,539 

36.2 .552 

42.9 .533 

41.3 .547 

37.3 .556 

40.2 .573 

39.1 .542 

41.7 .567 

7.7 

7.9 

8.0 

7.4 

7.5 

7.6 

7.9 

7.9 

8.2 

8.2 

8.4 

8.5 

9.4 

* Substrate  resistivity was .003 - .005 R-cmt deposits  for  all  other  cells  in 
Table  were  made on .005 - .009 R-cm substrates. 



Characteristics  of  Sample  Cells  Delivered to NASA 

Solar  Epitaxial  Epitaxial  Cell  Characteristics 
ceil Film  Film V Max% 

efficiency 
(Microns)  (R-cm) Hours TempOC  (ma) (VI 

I SC 
# Thickness  Resistivity  Diffusion oc 

14 36.9 - 
15 36.9 - 
16 "25 + "25 
17 "25 + "25 
18 "25 + "25 
19 -25 + "25 
20* - 40 
21 -3 3 

7 .O - 
2.2 - 
0.13 2.4 

0.09 3.0 

0 -12 2 .o 
0.13 2.5 

5 step 

5 step 

16 

16 

4.5 

4.5 

4.5 

4.5 

12 50 

12  50 

12 50 

12 50 

12 50 

12 50 
- 

41.2 

39.4 

41.8 

41.6 

42 .O 

41.6 

43.5 

41.4 

-539 

-538 

.488 

-541 

.52  5 

.539 

.409 

.515 

8.3 

7.3 

7 .O 

8.6 

7 .3  

7 .O 

5 . 5  

6.1 

* Substrate  resistivity was -007  - -009 R-cm;  deposits  for  all  other  cells  in 
Table  were  made  on -005 - .007 Q-cm  substrates. 



TABLE I11 

Characteristics of Sample  Cells  Delivered  to NASA 

Solar  Substratet Epitaxial Epitaxial Cell  Characteristics 
Cell  Resistivity Film Fi lrn I Max% 
# (0-cm) Thickness  Resistivity  Diffusion sc efficiency 

~ 

(microns) (R-crn) Hours  Temp O C  (ma) (W 
." - 

22 

23  

2 4  

25  

2 6  

2 7  

2 8  

29  

30 

3 1  

32 

33 

3 4  

35 

3 6* 

37 

38* 

39* 

.008 

.008 

.008 

.008 

.008 

.008 

.008 

.008 

.008 

-008 

.008 

-008 

.008 

.008 

.008 

.002 

.002 

.002 

25.L 

23 .1  

24.6 

26.8 

25.9 

23 .1  

-50 

- 50 

-50 

-50 

- 50 

- 50 

- 50 

-50 

- 50 

-50 

-50 

-50 

3.2 

7 .O 

8.9 

1 7  

9 .o 
11 .o 

-2 5 

-2 5 

-25 

"2 5 

-2 5 

-2 .1  

-2 .1  

-2 .1  

-2 - 1  

-1.1 

-1.1 

-1.1 

1 6  

1 6  

16 

1 6  

6 

" 

1 7  

1 7  

1 7  

1 7  

1 7  

25  

25 

25  

25  

25 

25  

25  

1200 

'200 

1200 

1200 

12  50 

" 

12 50 

12  50 

12  50 

12   50  

12  50 

12  50 

12  50 

12  50 

12  50 

12  50 

12 50 

12  50 

40.0 *55: 

43.2 .563 

44.5 .570 

44.6 - 5 6 5  

41.3 .546 

43 .1  .566 

40.4 - 4 9 7  

40.4 - 4 9 7  

44.6 .485 

38.9 .480 

41.4 .503 

43.7 .552 

40.4 - 5 4 4  

36.5 .521 

41.5 .533 

35.1 .515 

40.2 .553 

39.3 - 5 3 9  

. .  

- 
.J . d 
3 .a 
3.6 

9.7 

8 .7  

9.2 

7.9 

8.1 

8.1 

7.3 

8.3 

9.6 

8.6 

7.3 

6.5 

6.5 

7.2 

6.8 



TABLE Iv 

Characteristics of Sample  Cells  Delivered to NASA 

Solar  Silicon  Epitaxial  Epitaxial I V 
Cell  Substrate  Film  Film  Diffusion sc oc Max % 

# Material**  Thickness  Resistivity  Hours  TempOC  (ma) (v) Efficiency -? 

(microns)  (0-cm) 
c 

40t 
41t 

42 tt 

43* 

44* 
45* 
46 

47 

4% 
49 

50 

51 

52 
53 

54 

Lopex* 
n 

11 

I1 

11 

Czochralski 
11 

11 

11 

11 

Lopex* 
11 

I1 

11 

1I 

52.7 

46.1 

54.6 

27.3 

24.2 

50.9 
44.7 
56.7 

41 .'O 

59 .o 
47 -6 

52.7 

50 -9 

47.6 

52.7 

1.9 

2.3 

1.9 

2 -2 

7.6 

6 .O 
9 -8 
15 -0 

18.5 

38 
12.5 

4.3 

5 -0 

5.6 

4.4 

25 

25 

30 

6 

6 

19.5 
19 -5 
19.5 

19.5 

19.5 

19.5 

47 .o 
47.0 

47 .O 

47 .o 

12 50 

12 50 

12  50 

12 50 

12 50 

12  50 
12  50 
12  50 

12 50 

12  50 

1250 

12 50 

12  50 

12 50 

12  50 

45 .O 

44.2 

39.8 

45.1 

40.7 

46.2 
44.1 
44.7 

40.9 

46.9 

44.7 

42 -2 

44.4 

40.8 

45.6 

-551 

-514 

-530 

.559 

.550 

.533 

.564 

.566 

.510 

.556 

.531 

.532 

.553 

.537 

.540 

8.9 

7 -0  

7.2 

8.7 

7.5 

8.5 
9.9 
9.7 

7 .O 

10.1 

8.7  

8.0 

9.5 

8 . 7  

9 .o 

All cells 1 cm  x  2cm;  cells 40-44 are  3-grid,  cells  45-54  are  5-grid  geometry. 

Texas  Instruments  Incorporated  Tradename 

** All substrates  were 0.008 R-cm  except 40 and  41,  which  were  0.002  R-cm. 

t Gettered  one  hour at 900°C 
tt Gettered two hours  at  8OOOC 

* Gettered  two  hours at  1000°C 



TABLE V 

Characteristics of Sample  Cells  Delivered  to NASA 

Solar  Silicon  Epitaxial  Epitaxial I  sc  voc 

# Material**  Thickness  Resistivity  Hours  TempOC  (ma) (VI 

Max % 
Cell  Substrate  Film  Film  Diffusion  Efficiency $ 

(microns)  (R-cm) 

55t 

56t 

57 

58 

59 

60 t 
61 

62 

63 

64 

Lopex* 
I t  

I I  

I I  

11 

~ ~~ 

39 -9 

39.9 

41 .O 

50.9 

49.2 

49.2 

73.2 

75.7 

66.7 

69.7 

1.7 

2.6 

5.1 

25.5 

27.0 

3.7 

10 .o 
10 .o 
12 .o 
16.5 

17 

24 

24 

17 

17 

24 

144 

100 

144 

66 

12  50 

12  50 

12  50 

12  50 

12  50 

12  50 

1250 

12  50 

12  50 

12  50 

37.4 

38.8 

37.5 

41.6 

42.6 

38.5 

39.2 

41.7 

41 .O 

41.2 

0.532 

0.477 

0.525 

0.499 

0.505 

0.459 

0.508 

0.503 

0.500 

0.513 

8.8 

7.7 

8.7 

9.2 

9.4 

7.9 

7.7 

8.9 

7.9 

8.6 

* Texas  Instruments  Incorporated  Trademark 

** Substrates  were 0.005 R-cm  for 55 to 60 and 0.008 R-cm  for 61 to 64 

t Gettered  two  hours  at 900°C 

$ Based on 1.6 cm  active  area 2 



TABLE VI 

Characteristics  of  Sample  Cells  Delivered to NASA 
~~~ ~ ~~~ ~~ ~~ ~~ ~ 

Solar  Silicon  Epitaxial  Epitaxial I V Max % 
Cell  Substrate  Film  Film  Diffusion  sc  oc Efficiency* 

# Materialt  Thickness  Resistivity  .Hours .Tempo  C (ma) (v) 
(microns)  (R-cm) 

65 Lopex* 55.8 22  63 1250 37.9  0.550  8.3 

66 II 51.8 17 12 0 1220 38.3  0.545  8.0 

67 I 1  53.8 18 120  1220 43.0 0.567 8.4 

68 I I  49.3 17  120 1220 40.8  0.577  8.7 

69 I1 52.6 18 120  1220 42.0 0.574 10.4 

70 I1 73.7  12  120 1220 45.2 0.550  10.3 

* Texas  Instruments  Incorporated  Trademark 

t Substrates  were 0.007 R-cm. 

* Based  on 1.6 cm  active  area 2 



TABLE VI1 

Characteristics of Sample  Cells  Delivered to NASA 

Silicon  Epitaxial  Epitaxial I sc V 
Solar  Substrate  Film  Film 

oc 

Cell  Resistivity  Thickness  Resistivity  Diffusion Max% 
# (R-cm) * (microns) (R-cm) Hours  TempOC (ma) (V) Efficiency 

7 1  

72 

73 

74 

75 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

0.008 

0.008 

0.008 

0.008 

0.008 

0.008 

0.008 

0.20 

0.20 

0.20 

0.20 

0.20 

0.20 

0.20 

0.20 

49.3 

50.7 

50.7 

23.1 

23.1 

13.7 

1 3  - 7  

27.4 

27.4 

27.4 

27.4 

25.9 

25.9 

27.4 

25.9 

19  

1 3  

15  

12 

12 

7 

7 

11 

11 

12 

12 

14 

14 

11 

12 

76.5 

76.5 

76.5 

18.5 

18.5 

5.8 

5.8 

5 1  

5 1  

5 1  

5 1  

5 1  

5 1  

5 1  

5 1  

12 50 

12 50 

12 50 

12 5.0 

12 50 

12 50 

12 50 

12 50 

12 50 

12  50 

12 50 

12  50 

12 50 

12  50 

12 50 

43.3 0.562 

45.1  0.563 

43.8  0.561 

38.9  0.562 

39.1  0.562 

32.7  0.562 

33.6 0.562 

51.9 0.561 

53.0 0.561 

51.2  0.562 

53.6  0.562 

50.6  0.562 

5 1  - 0 -  0.562 

52.7  0.563 

53.2  0.562 

9.3 

8.8 

8.2 

7.9 

7.4 

7.4 

7.5 

11.7 

12.3 

11.2 

12.7 

12 .o 
11.6 

12  .o 
12.7 

* Substrates  are  Czochralski pulled. 



TABLE VI11 

Characteristics of Sample  Cells  Delivered to NASA 

Solar  Silicon  Epitaxial  Epitaxial ISC voc H a x %  Cell  Substrate Pi Im Film  Diffusion  Efficiency 
# Resistivity  Thickness  Resistivity  Hours  TempOC ( 4  (VI 

(Q-Qn) (microns) (Q-Qn) 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 
96 
97 

98 

99 

100 

0 -20 

0 -20 

0 -20 

0 -20 

0 -20 

0 -20 

0 -20 

0 -20 

0 -20 

0 -20 

0 -20 

0 -20 

0 -20 

0.20 
0.20 

50 .8 

14.0 

13.7 

13 .7 

13.7 

13.7 

13.7 

13.7 

5.9 

5.9 

5.9 

5.9 

5 .9 

5.9 
5.9 

12 

9 

9 

9 

9 

9 

9 

9 

3 

3 

3 

3 
3 

3 
3 

162 

12 

12 

12 

12 

12 

12 

12 

3 -25 

3 -25 

3 -25 

3.25 

3 -25 

3 -25 
3 -25 

1265 

12 65 

1265 

1265 

1265 

1265 

1265 

1265 

1265 

12 65 

12 65 

12 65 

12 65 

12 65 
1265 

50 .O 

47 -4 

44.2 

46 .O 

43.1 

43 -9 

48.0 

44.8 

41 .O 

40.5 

40.7 
43 .O 

42.1 

39.3 

41.5 

0.557 

0 . 575 
0 . 572 
0 . 569 
0 . 567 
0 . 570 
0 . 579 
0 . 578 
0.565 

0.566 

0.567 

0 . 563 
0 . 564 
0 . 560 
0 . 547 

9.5 

10 -8 

9.5 
9.8 

9.5 

9.7 

10 -9 

10.3 

7.9 

8.3 

8.5 

8.2 

8.1 

7.8 

7.2 

* Substrates  are  Czochralski  pulled. 



regarding  sample  cells  one  through  seventy,  but  more 

quantitative  statements  are  given  regarding  cells 71 

through 100, which  were  fabricated by Procedure I1 

(See VI) . 
A number of cells  were  prepared  by  approaches 

1 and 3 described in 1II.C. Only  six  cells,  however,  were 

considered  worthy  of  shipment  as  sample  cells.  Characteris- 

tics  of  these  cells,  numbers 16 through  21,  are  shown  in 

Table 11. As a result of a decision  to  emphasize-  attempts 

to improve  carrier  lifetime,  the  relatively  poor  resistance 

to  radiation  (see  VIII),  and  the  relative  difficulty of 

preparing  cells  by  these  two  approaches,  approach  one  (single 

deposit  and  diffusion)  was  utilized  for  all  the  other  sample 

cells. 

Cells 28 through  36  (Table 111) were  fabricated 

from  50-micron  thick  epitaxial  deposits  on 0.008 R-cm  Lopex 

substrates.  Layer  resistivities  for  cells  28-32  were  about 

25 R-cm  and  for  cells  33-36,  about 2 R-cm.  Whereas  values 

* 

Of ISC 
and the  maximum  efficiencies do not  indicate  any 

significant  difference  between  the  two  groups,  the  values 

of V for  cells  28-32  are  almost 0.05 volt  lower  than  those oc 
for  cells  33-36.  This  was  expected 

resistivity. 15 

Ten  cells  were  subjected 

due  to  the  higher  base 

to a gettering  treatment. 

On  the  basis  of  data  from  these  cells  and a number of others 

not  included  as  sample  cells,  it  appears  that  use  of  the 

* Texas  Instruments  Incorporated  Tradename 
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gettering  step (front or  backside) did not  improve  current- 

voltage  characteristics  of  cells  fabricated from deposits 

either  on  Lopex  or  on  Czochralski silicon. In ,fact, the 

average  maximum  efficiency of a  group  of  four  gettered 

cells  was  less  than  seven  per  cent  compared  with  an  average 

efficiency  above  nine  per cent for five  ungettered  but 

otherwise  comparable cells. 

* 

With  respect to Isc, Vocl and maximum  conversion 

efficiency, no  significant  differences  could  be found between 

unirradiated  cells  fabricated from Lopex and  from Czochralski 

silicon material. 

* 

As mentioned  in IV.A, for sample  cells  1  through 

50 the  thickness  of  uniform  concentration  material adjacent 

to  the surface was greater  than intended. Sample  cells 51 

through 100 utilized  longer  diffusion  times and the concen- 

tration  gradient  thus  extends  more  closely  to  the surface. 

(In  the  optimum cell, as pointed out in  Appendix I, the  drift 

field should  begin as near to the  junction as possible.) Sample 

cells  45-50and 51-54 constitute two groups in which  the  principal 
difference is the diffusion time. Using  the  diffusion  constant 

of Williams' suggested  a  requirement  of 19.5 hours at  1250OC. 

The  diffusion  constant  of  Kurtz and Yee9 required 47.0 hours 

at 125OOC to diffuse  the  impurities out to  the surface. There 

appear to  be no  significant  differences  in  the  values of Isc, 

Voc, and maximum  conversion  efficiency  between  the two groups. 

In terms  of Isc, Voc, and maximum  conversion 

efficiency for sample  cells  fabricated  by  Procedure I, the 
variation  of  epitaxial  layer  thickness from 16 microns  to 76 
microns had no  visible effect. 

* Texas  Instruments  Incorporated  Tradename 
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For  cells  fabricated  by  Procedure I1 (See VI.) 

the  variation  of  epitaxial  layer  thickness  had  a  marked 

effect  on  the  electrical  characteristics  (unirradiated 

cells).  Cells  fabricated by this  procedure  (this  includes 

sample  cells 71 through 100) were  divided  into  seven  groups 

depending  on  substrate  and  epitaxial  values  and  time  re- 

quired  to  diffuse  the  impurities to the  surface.  Preparation 

conditions  €or  the  groups  are sham in  Table IX. Examination 

of  Tables VI1 and VI11 show  that  whereas  values  of V are 

for  all  seven  groups  consistently  high,  some  significant 

differences  occur in values  of I and  the  maximum  efficiency. 

Significance of these  variations  is  easily  seen  in  Fig. 26, 

which  shows  the  distributions  of  the  short  circuit  current 

values  for  cells  in  the  seven  groups.  For  cells  made  on 

0.008 R-cm  substrates  (groups I,  11, and 111), values  of I 

decrease  with  decreasing  width  of  the  drift  field.  Particularly 

low  are  the  current  values  for  cells  in  Group 111. I n  this 

group,  by  far  the  majority  of  carriers  were  generated  in  a 

region  in  which  the  mobility  was  quite  low.  For  cells  made 

on 0.20 a-cm  substrates  (groups IV,  V, VI, and VII), however, 
a  maximum  in  value  of I is  observed  as  the  drift-field  width 

decreases.  Highest  values  of I occur  for  cells  in  Group V. 

Of  the  seven  groups, V is  closest  in  drift-field  characteristics 

to the  "optimum"  structure  (see  Appendix I) for  an  irradiated 

cell . 

oc 

sc 

sc 

sc 

sc 

Although  there  is  some  variation  in  values  of the 

epitaxial  film  resistivity  among  the  seven  groups,  effect  of 

this  variation on I is not  considered  significant  except 

perhaps  for  Group VII, for  which  the  resistivity  values  are 

somewhat  lower  than  intended. 

sc 
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Table IX 

Preparation Conditions for Cells Fabricated by Procedure I1 

Nominal lQamina1 
Number of Silicon  Epitaxial Epitaxial 
Cells in Substrate Film Film Diffusion 

Group  Group Resistivity Thickness Resistivity Hours  TempOC 
Numher Evaluated (Q-cm) * (microns) (a-cm) 

I 26 0.008 

I1 20 0 -008 

I11  16 0.008 

Io 15 0 -20 

V 16 0 -20 

VI  14 0 -20 

VI1 21 0 -20 

50 

25 

13 

50 

25 

13 

6 

17 

14 

9 

12 

13 

9 

3 

76.5 12 50 

18.5 12  50 

5.8 12 50 

162 1265 

51 12 50 

12  12 65 

3 -25  1265 

* Substrates were Czochralski pulled. 
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C. Spectral  Response 

In this  section  data  are  given  regarding 
relative  collection  efficiency  versus  wavelength  for 

various  cells,  Absolute  efficiency  data  are  not  avail- 

able  for  these  cells,  and  thus  the  relative  comparison of 

the  ordinate  does  not  extend  from  cell to cell.  The 

ordinate, in every  case,  is  the  relative  response  per 

photon . 
Figure 27 gives  spectral  response  data  for  three 

cells,  Curve  A  represents  the  relative  response  per  photon 

of  a  normal  n-p,  non-epitaxial  solar  cell  manufactured  by 

Texas  Instruments  Incorporated.  This  cell  had  a  maximum 

efficiency  of 12.5 per  cent.  Curves  B  and  C  represent 

relative  photon  efficiencies  of  cells  fabricated  (by  Procedure 

I) from  epitaxial  material.  Both  had  38-micron  thick, 2 n-cm 

deposits.  Cell  B  received  a  diffusion  of 16 hours  at  125O0C1 

Cell C was  not  diffused  before  fabrication.  Carrier  life- 

time in Cells B and  C  are  substantially  lower  than  the  lifetime 

in Cell A. These  shortened  lifetimes  result  in  reduced 

efficiencies  at  the  longer  wavelengths.  Because  Cell  C 

received no drift  diffusion  after  epitaxy,  the  concentration 

profile in the  base  region  is  similar to that  in Fig.  4a.  of 

III.C.l. Thus,  the  field  to  accelerate  the  electrons  to  the 

collector  junction  does  not  coincide  with  the  region  in 

which  the  majority  of  the  photons  are  absorbed. In Cell B, 

the  drift  field  extends  closer  to  the  junction,  but  does  not 

reach  the  surface. 

Employment  of  a  gettering  treatment  apparently 

broadened  the  relative  collection  efficiency  for  cells  made 
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* 
on 0.002 Q-cm Lopex and 0.008 n-cm Czochralski  substrates 

with about 50-micron thick deposits. Curves D and E of 

Fig. 28 represent, respectively, relative  response  of  cells 

37 and 38. Cell 38, which  was gettered, shows  a  broadened 

response. The  curves  in Fig. 29 show  similar  broadening 

by gettering  for  cell 45 relatiie to Cell 47. 

Curves B and C of Fig.  30 provide  a  comparison 

of the  response of Cells 25 and  32, respectively. These 

cells had similar  epitaxial  layer  resistivities, but the 

Cell 32 layer is twice  as  thick  as  the  Cell  25 layer. For 

Cell 32, in  which  the  impurity  gradient  extends  over about 50 

microns, the  peak  response is broader  than  for  Cell 25, but 
neither  are as flat as the  response for a  normal n-p cell 

represented  by  curve A. 

The  cells represented in Figs. 28 and 30 have  peak 

responses  in  the 0.70 to 0.78 micron region. Cells made  from 

epitaxial  deposits on Czochralski  silicon  substrates showed 

less  sensitivity  in  the red region, peaking at 0.65 micron or 
less. These and other  observations suggest that  the  cells 

fabricated from deposits  on  Lopex  crystals  exhibit  higher 

lifetime  than  those  which  were  made from deposits  on  Czochralski 

crystals. (This  assumes  constant  fabrication conditions, 

which for cells fabricated by  Procedure I probably ie not a 
good assumption.) 

* 

Cells  fabricated  by  Procedure I1 afforded a good 
opportunity  for  examination of relative  spectral  reeponee as 

a  function  of  epitaxial layer thickness and substrate reeistivity. 

* 
Texas Instruments  Incorporated Tradename. 

66 



4J 
0 

k x 

LOO 

90 

80 

70 

60 

50 

40 

30 

20 

10 

n 

f i 
i 

i .  

:I 

t 
W 1 

0.4 0.5 0 . 6  0 . 7 0 .8  0.9 1 .o 1.1 1 .2 

Q, 
4 

Wav .:ngth (Microns) 





I G 
0 
c, 
0 

I E  
Ll 
hi a 

c 
0 
ffl! 
a 
2 

Fig. 30 - Relative  Collection  Efficiency 
versus Wave  Length 

100 

90 

80 

70 

60 

50 

40 

30 B - cell 25 
C - cell 32 

20 

10 

0 
0.4  0.5  0.6 0.7 0.8 0.9 

Wave  Length (Microns) 

1 .o 1.1 1.2 



Relative  collection  efficiency  was  determined  for  a 

representative  cell  from  each  of  the  seven  groups  listed 

in  Table IX. The curves  in  Fig. 31 show  the  spectral 

response  for  cells  from  Groups It I1 and 111. The  re- 

lative  response  is  broader and slightly  more  sensitive 

in  the  red  region  for  the  thicker  drift-field.  Figure 32 

shows  the  curves  for  cells froan Groups  IV, V, VI,  and  VII. 

The  same  relation  of  increasing  sensitivity  to  red.  with 

increasing  drift-field  thickness  holds,  except  for  the  cell 

from  Group  IV 

VIII. RADIATION  RESULTS 

Radiation  experiments  were  conducted  by  NASA 

on  cells  selected  from  the  first  seventy  sample  cells. 

Since  the  last  two  sample  lots  (cells 71 through 100) were 

transmitted  only  recently,  irradiation  data  have  not  yet 

been  received  for  them.  Therefore,  the  data  presented  in 

this  section  does  not  include  irradiation  results  for  what 

is  now  thought  to  be  the  optimum  drift-field  structure. 

Previous  sections  of  this  report  have  mentioned 

the  lack  of  reproducibility of cell  characteristics  from  one 

cell  to  another  among  cells  in  a  common  grouping.  This  lack 

of  reproducibility,  ascribed  to  the  partial  shorting  of  cells 

fabricated  by  Procedure I, also  is  evident  in  widespread 

variation  in  the  radiation  experiments.  Presented  in  Figs. 

33,  34, and 35 are  curves  which  show  the  degradation  of  short 

circuit  current  as  a  function of 1 MeV  electron  flux  for 32 

cells.  Current-voltage  values  were  obtained  for 100 mW/cm 2 

xenon  light  illumination.  The  current  values  are  normalized 

to their  pre-bombardment  values.  Sample  cell  numbers  correspond 

to  those  in  Tables  I-VI. 
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For  cells  fabricated  with  a  high-resistivity 

epitaxial  layer,  other  conditions  being  equal,  the  short 

circuit  current  decreases less rapidly  and  the  open  circuit 

voltage  decreases  more  rapidly  with  one  MeV  electron  radiation 

than  for  cells  fabricated  with a lower  resistivity  epitaxial 

layer.  Over-all  degradation is  less,  however,  for  the 

former  than  for  the  latter,  in  agreement  with  a  similar 

base  resistivity-radiation  resistance  dependency  observed 

for  field  free  cells. l7 Figure 36 shows  the  increased 

resistance to degradation  with  decreasing  impurity  atoms 

in  the  base  (increasing  resistivity)  for  a  group  of  eleven 

cells,  each  having  an  epitaxial  layer  about 25 microns  thick. 

Data  correspond  to  a  cumulative  flux of 1 x  electrons  per 

cm . Numbers  adjacent  to  the  data  points  correspond  to  sample 
cell  numbers  in  Tables 1-111. Magnitude  of  the  decrease  in 

the  open  circuit  voltage  with  radiation as a  function of 

doping  level  is  less  marked  and  is  not  shown. 

2 

Best  of  the  sample  cells  tested in  terms  of  per 

cent  current  remaining  after  irradiation  was  cell 28 which 

had  lost  only  eight  per  cent  of  its I value  at  a  cumulative 

one  MeV  electron  flux  of 1.2 x 10 . For  this  cell,  however, 16 sc 

the  reduction in the V value  at  the  same  flux  level  was oc 
nineteen  per  cent.  Best  of the  cells  tested  in  terms  of 

absolute  maximum  efficiency  in  a 100 mW/cm xenon  light  source 

was  cell 24, which  still  had 5.4 per  cent  efficiency  after 

1.2 x  one  MeV  electrons. 

2 

On  the  basis  of  radiation  experiments  with  sample 

cells  fabricated  by  Procedure I, no  improvement  (at a level: of 
statistical  significance)  in  radiation  resistance  can  be  ascribed 
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either to the  use  of  a  gettering  operation  (front  or  backside) 

or to the  use  of  Lopex  silicon. 
* 

The  calculations in Appendix I were  made  on  the 

basis  of  optilnizing  the  short-circuit  electron  current 

from  the  p-region  of  the  cell.  They  were  not  concerno.2 v j  t3 

the  effects  of  degradation of the  open  circuit  voltage. It 

seems  quite  possible,in  view  of  the  experimental  evidence 

cited  above,  that  the  optimization of I may  be  at  the 

expense  of V . Thus,  to  secure  maximum  usable  power  may 

involve  some  "trade-off"  between  the  respective  parameters. 

The  sample  cells  closest  in  drift-field  structure to the 

optimum  suggested  in  Appendix I are  cells 78-85 and 87-93 

(see  Table  VI1  and  VIII).  Data  from  radiation  experiments 

with  these  cells  should  be  helpful  in  showing  the  relative 

degradations  of  V  and I for  a  structure  near  optimum  for 

sc 
oc 

oc  sc 
I .  sc 

IX. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

Experimental  silicon  drift-field  solar  cells  were 

produced  by  means  of  advanced  epitaxial  and  diffusion  technology. 

A  variety of drift-field  structures  were  made,  some of  which 

produced  cells  more  resistant  to  bombardment  by  one  MeV 

electrons  than  are  ordinary  n-p  solar  cells. A number of 

sample  cells,  fabricated  near  the  end  of  the  contract  period 

from  near-optimum  drift-field  structures,  exhibited  high 

current  values  in  the  unirradiated  state. On the  basis of 

the  theoretical  analysis of drift  fields  which  was  made, 

these  sample  cells  when  irradiated  should show superior 

radiation  resistance. 

* 
Texas  Instruments  Incorporated  Tradename. 
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Drift-field  structures  built  by  the  single 

epitaxial  deposit  and  drift  diffusion  technique  (section 

III.C.1) and  fabricated  into  cells  by  Procedure I1 

(section VI) represent  the  best  combination  of  methods 

by which a drift-field  solar  cell  may  be  produced.  Ex- 
cellent  reproducibility  of  electrical  characteristics 

from  one  cell to another  within a common  group  of  those 

cells  was  noted.  Over-all  high  yields  (electrical  and 

mechanical)  obtained  with  this  procedure  were  almost  as 

high  as  for  production  of a standard  n-p  solar  cell, 

establishing  the  production  feasibility  of  this  procedure 

to  build  drift-field  solar  cells.  This  process  promises 

to  be  much  less  expensive  than  one  which  involves a precision 

lapping  operation  after  the  epitaxial  deposition  due  to the 

low  yields  inherent  in  that  process. 

Good  reproducibility  was  not  found  for  cells 

fabricated  by  Procedure I and  production  yields  were  low 
because bf the  reasons  cited in section VI. 

The  theoretical  analysis of drift-fields  (Appendix I), 

which  takes  into  account  the  variation  of  mobility  with  concen- 

tration,suggests  that  the  ratio of the  impurity  concentrations 

in  the  gradient  making  up  the  drift  field  should  not  exceed 

three  orders  of  magnitude.  Also,  the  width  of  the  drift  field 

probably  should  not  exceed 25 microns.  Low  carrier  lifetime 

prevents  the  improvement  of  over-all  collection  efficiency 

by use  of  significantly  thicker  deposited  layers. 

Though  the  longer  wavelength  response  was  improved 

in  some  instances by wider  drift  fields  and/or by higher  initial 
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lifetime use of 
* 

Lopex silicon or gettering) , the 
maximum  conversion  efficiency  after  irradiation  apparently 

was  not  improved. On the  basis  of  radiation  experiments  with 

sample  cells  fabricated by Procedure I, no improvement  in 

radiation  resistance  could be ascribed to the  use  of  a  gettering 

operation  or to the  use  of  Lopex  silicon. 
* 

The  method  developed  for  determining  the  concen- 

tration  profile (1V.B.) represents  an  important  advance  in 

cell  evaluation, In future  work,  it  is  recommended  that 

cells  which  show  particularly  good  (or  poor)  resistance  to 

radiation  be  subjected  to  a  profile  measurement to determine 

the  exact  drift-field  structure. 

The  calculations  in  Appendix I were  made  on  the 

basis of optimizing  the  collection  efficiency  and  short- 

circuit  current.  They  were  not  concerned  with  the  effects 

of  degradation  of the open  circuit  voltage.  The  radiation 

data  show  that to secure  maximum  usable  power  may  involve 

some  "trade-off"  between  the  current  and  the  voltage.  Thus, 

it is  recommended  that  subsequent  work  include  a  study  of 

the  degradation  of  the  open  circuit  voltage  and  its  effect 

on  available  power  output  from  the  cell. 

X. NEW TECHNOLOGY 

During  the  course of the  contract,  a  method  was 

developed  for  the  determination  of  a  concentration  gradient 

profile  in  silicon  structures,  Description  and  uses of the 

method,  which is a  substantial  improvement  over  any  method 
previously  used,  are  given  in  section 1V.B. 

* Texas  Instruments  Incorporated  Tradename 
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APPENDIX I 

INFLUENCE OF MOBILITY  VARIATIONS  ON  DRIFT FIEIJI 

ENHANCEMENT IN SILICON  JUNCTION  DEVICES 

W. Murray  Bullis  and W. R. Runyan 

Texas  Instruments  Incorporated,  Dallas,  Texas 

ABSTRACT 

An  analysis  of  drift  fields  formed  by  an 

impurity  gradient  is  carried  out  allowing  for 

mobility  variations  with  impurity  COnCentratiOn- 

It  is  shown  that  in  the  case  of  a  transistor  base 

of specified  width  there  is  a  minimum  time  for 

transport of carriers  across  the  base  which  occurs 

at  some  optimum  value  of  the  ratio  of  impurity  con- 

centrations at  the  two  edges of the  base  region. In 

the  case  of  photovoltaic  solar  cells,  a  field  width 

of  about  twice  the  diffusion  length  of  the  minority 

carriers  maximizes  the  collection  efficiency.  For 

lifetimes  longer  than  one  microsecond  the  optimum 

field  width  is  about 2 5  microns,  a  value  governed  by 

the  absorption  characteristics  rather  than  the  diffusion 

length. In most  cases,  increasing  the  concentration 

ratio  above 3 orders of magnitude  is of little  or no 

assistance in improving  the  collection  efficiency. 
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I. INTRODUCTION 

Internal  electric  fields  resulting  from  a  density 

gradient  of  majority  impurities  may  be  used to enhance 

the  motion  of  minority  carriers  in  appropriate  regions 

of a  device  structure. In particular,  such  aiding 

drift  fields  have  been  suggested  for  increasing  the  high 

frequency  response  of  transistors  with  specified  base 

width  and  for  enhancement  of  the  current  collected 1-3 

in  a  photovoltaic  solar  cell . However,  the  necessi- 4-7 

ty  for  varying  the  impurity  density to produce  the  drift 

field  will  also  change  other  characteristics.  For  ex- 

ample,  Varnerin' has  shown  that  if  the  total  number  of 

majority  impurities  in  the  base  region of a  high  frequencv 

transistor  is  held  constant,  the  highest  ''requency de- 

vices  result  from  the  incorporation  of  retarding  rather 

than  aiding  drift  fields. 

With  the  exception  of  this  last  paper  and  some 

correspondence  concerning  it , all  previous  analyses 

have  neglected  the  variation  of  mobility  and  lifetime 

with  impurity  concentration.  Since  the  mobility  of 

carriers  drops  sharply  as  the  impurity  concentration 

9 
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'is  increased,  it  can  be  naively  assumed  that  at  some 

point,  increasing  the  drift  field  would  not  result in 

further  enhancement  of  the  desired  effects  and  that,. 

at  least  in  some  cases,  optimum  configurations  might 

exist.  It  is  the  purpose  of  this  paper to examine 

certain  aspects  of  transistor  and  solar  cell  behavior 

from  this  more  general  point  of  view. 

11. TRANSIT  TIME IN A TRANSISTOR  BASE  WITHOUT  RECOMBINATION 

The  simplest  situation to consider  is  the  base 

region of a  transistor. In this  case,  minority  carriers 

are  injected  at  one  side  and  collected  at  the  other. In 

general,  the  width  of  the  base  can  be  made  small  enough 

that  losses  due to recombination in the  base  region  can 

be  neglected, so that  the  current is constant.  Following 

Varnerin, we define  the  base  transit  time t as  the  ratio 

of  stored  charge  Q to the  emitter  current I : 

8 

S e 

t = Qs/Ie- 

If  a  one-dimensional  structure  is  considered,  this 

relation  may  be  expressed  more  generally as 

W t = - q J  n dx 
J I 

0 
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where  q  is  the  electronic  charge, w is  the  base 

width,  and J is  the  emitter  current  density. If 

we consider  the  case  where  electrons  are  injected 

into  a  p-type  base,  the  current  density is given  by 

where D is  the  electron  diffusion  coefficient, 

is  the  electron  mobility,  and E is  the  electric  field 

seen  by  the  electrons.  The  mobility  and  diffusion  co- 

efficient  are  related  by  the  Einstein  equation: 

n 'n 

and  the  electric  field is given  by 

when  the  majority  carrier  (hole)  density  can  be  obtained 

from  the  Boltzmann  distribution  and  when  there is no 

applied  external  field in the  region  of  interest. 
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If Eqs .  (2-4) and (2-5) are  substituted in Eq. (2-3), 

a  linear  differential  equation  of  the  first  order  is 

obtained. By the  use  of  an  integrating  factor,  it  can  be 

solved in  a  convential  way  even  when D is a  function 

of the  distance.  lo If it is  assumed  that  all  minority 

carriers  are  collected  at  the  base-collector  junction 

(x-) this  solution  is 

n 

Substitution of E q .  (2-6)  into Eq. (2-2) yields for the 

transit  time 

This  double  integral  can  be  evaluated  numerically  for 

silicon. In applying  these  approximate  relations  to 

obtain  the  diffusion  coefficient  two  assumptions  are  neces- 

sary.  First,  all  the  shallow  impurity  centers  are  assumed 

to be  ionized  at  room  temperature.  Second,  it  is  assumed 

that  the  mobility  of  electrons  is  the  same  in  both  n-  and  p-type 

silicon if the  ionized  impurity  densities  are  equal. 
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At  electric  fields  over 10 V/cm,  the  current  be- 

comes  non-ohmic  and a further  reduction  of  mobility  occurs. 

Since  the  fields  encountered  in  the  base  region  of a 

transistor  are  the  order  of  2x10 /w, where w is  the  base 

width  in  microns',  this  effect  can  be  significant in very 

narrow  base  transistors.  Calculation  of  the  effect  in 

the  presence  of  both  drift  and  diffusion  components of 

electric  current  is  extremely  complex,  l3  but  qualitatively 

a further  increase  in  transit  time  would  be  expected to 

result  from  this  effect  at  very  large  electric  fields. In 

the  solar  cell  case,  which  was  of  primary  interest  in  the 

present  study,  this  effect  will  not  be  significant  and so 

it  was  not  considered  explicitly  in  the  calculations. 

3 

12 

3 

An  exponential  distribution  results  in a constant 

field  throughout  the  base  region  and  the  shortest  transit 

time  for a given  ratio  of  impurity  densities  at  the 

edges  of  the  base  region  in  the  case  where  the  width  of 

the  base  region  is  fixed. If this  transit  time is com- 

puted in the  usual manner- (constant  mobility),  the  curves 

1 and 2 of Fig. 1 result.  The  lower  concentration  limit 

ip  general  will  be or 10 cm  because  the  edge  of 

the  junction  transition  region  will  have  moved  to  about 

that  point. It follows  then  that  the  upper  concentration 

limit  will  be  in a region  where  the  mobility is reduced. 

15 -3  
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The  remaining  curves of Fig. 1 show  transit  times  cal- 

culated  from Eq. (2-7) with  the  assumption of a variable 

mobility. It  is  apparent  that  there is indeed  an  optimum 

field  and  that  it  is  produced  by  only  two  or  three 

orders  of  magnitude  change in doping  level. 

Although  the  exponential  distribution is most 

desirable,  it  is  normally  not  obtained  in  practice. 

Impurity  gradients  are  usually  obtained  by  diffusing 

into  a  region  which  already  has  a  certain  background 

impurity  concentration. In the  transistor  case,  the 

impurity  is  often  that  of the collector  and  is  there- 

fore  the  opposite  type to  the base.  If  this  impurity 

has  a  diffusion  coefficient  which  is  significantly 

lower  than  that  of  the  impurity  forming  the  drift  field, 

the  background  impurity  can  be  assumed to be  constant. 

If  the  diffusion  profile  is  exponential,  the  final  net 

impurity  distribution  is  non-exponential  and  is  given  by 

x In (N1/No 1 N = N exp 0 W 
+ N  C' 

where N is the  concentration  of  diffusant  at  the  emitter 

junction, N is  the  concentration  at  the  collector  junction, 

0 

1 
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and N the  background  concentration  of  the  starting 

material  (and is negative).  Because  the  field  is 

C 

enhanced  near  the  collector  junction,  transit  times 

somewhat  shorter  than  those  obtained  for  a  constant  field 

with  the  same N and N are  obtained in this  case  as 

can  be  seen in Table I. Two points  should  be  noted  in 

0 1 

this  connection.  First,  a  true  exponential  with  the 

end  points N and N1-NC would  give  the  minimum  value of 

transit  time  for  these  end  points.  Examples  of  this 

0 

are  also  given  in  Table I. Second,  as  was  mentioned 

earlier,  the  minimum  value  of  impurity  concentration 

on  the  base  side of the  base  collector  junction  is 

controlled  by  space  charge  considerations  at  the  junction 

and  cannot  drop  below 1014 cm-3  for  reasonable  geometries. 

If the  impurities  in  both  regions  are  the  same  type 

(not  likely in  transistors,  but  applicable to the  solar 

cell  case to be  considered  next) , Eq. (2-8) can  be  used  with 

N positive.  Examples  of  this  case  are  also  given in 

Table I. It  can  be  seen  that  for  the  cases  shown,  the  effect 

C 

of  the  background  impurity  is  almost  negligible. As N 

approaches N the  effect  increases  somewhat. 
1 

C' 
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The  distribution  of  diffused  impurities  turns  out 

more  often to be  a  complementary  error  function  (erfc) 

than  an  exponential. In Fig. 2, transit  times  for 

several  cases of interest  for  both  exponential  and 

erfc  distributions in the  absence  of  a  background 

impurity  are  compared..  That  the  exponential  distri- 

bution  always  yields the shorter  transit  time  may  be 

qualitatively  understood  by  referring to Figs. 3 and 4.  

From  Fig. 3,it can  be  seen  that  the  erfc  concentration 

is  greater  at  each  point in the  base  region.  Further, 

where  the  concentration  is  greatest,  it  is  most slowly 

varying.  Hence  the  aiding  field  is  lowest  as  is  shown 

in Fig. 4.  When  the  concentrat?-on  is  sufficiently 

large,  the  mobility is significantly  reduced  over  a 

large  portion  of  the  base  and  the  transit  time  increases 

sharply. 

In the  presence  of  a  background  impurity  with  a  low 

diffusion  coefficient,  the  distribution  is  given  by: 
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where  erfc R = - . Examples  of  transit  times  for I 

NO 
N both positive  and  negative  are  also  given in  Table I. 

As before,  the  effects  of  a  background  concentration 

C 

are  not  large. 

111. CO&LECTION-~EFFICIENCY - IN A SOLAR CELL 

In  a solar cell  the  conditions  are  somewhat  more 

complex  than  those  considered  in  the  previous  section. 

If the  base  region  of  an  n-on-p  cell is considered, 

the  electron  current  is  again  given  by  Eq. (2-3) where 

the  junction  is  in  the  y-z  plane. It is  necessary to 

include  both  generation  and  recombination in the  present 

case. In the  steady  state,  for  the  p-type  base  region, 

the  continuity  equation  becomes 

"" 
1 dJ n 
q dx T 

+ G = 0 ,  

where  it is assumed  that  the  electron  density n resulting 

from  the  illumination is much  greater  than  the  equilibrium 

minority  carrier  concentration.  The  generation  term  is 

given  by 



where a ( h )  i s  the  absorpt ion  coeff ic . ient   a t  a wave- 

length h ,  d ( A )  is the  absorbed  photon  density a t  a 

wavelength h ,  and h i s  the wavelength  corresponding 

t o   t h e  band gap of the so la r   ce l l   ma te r i a l .  Kleinman 

has  developed a very  powerful method Eor obtaining 

col lect ion  eff ic iency from EQ. (3-1) for  the case of 

constant   coeff ic ients  E,  D, and T. This  method in -  

volves  the  use of photodensity  functions which a re  

r e l a t e d   t o  G(x). I n  applying  these  functions  numerical 

integration  techniques  are  required.  Kleinman gives  the 

numerical  values which are  necessary  for  the  case  of 

s i l i c o n   s o l a r   c e l l s  i n  outer  space which w i l l  be 

considered  here. 

g 
6 

6 

I n  the  present   analysis ,   the   cel l  i s  divided  into 

4 regions  as shown i n  Fig. 5. I n  the f ie ld-free  regions 

of the p-type  base, Kleinman’ s solutions6 are employed 

using  the  boundary  conditions n = 0 a t  x = ( j unction) 

and n = 0 a t  x = x (ohmic contact on back of c e l l ) .  The 

f i r s t  of these  condi t ions  refers  t o  the   shor t   c i rcu i t   case  

bu t   t he   r e su l t s  can  be  easily  extended t o   a r b i t r a r y  currents .  

xj 

t 

6 
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These conditions  leave  an  undetermined  constant for 

each  region.  In  region 111, Kleinman's solut ions 

can be employed on ly   i n   t he  case of constant co- 

e f f i c i e n t s .  When the   coe f f i c i en t s  are not  constant, 

approximate methods must be employed. I n  both cases, 

however, values  for  both n and J a re  matched a t  t he  

boundaries x. and x r e s u l t i n g   i n  a set  of  simultane- 

ous equations.  This  system  can be readily  solved  using 

a high-speea d i g i t a l  computer. The e lec t ron   cur ren t  

a t   t he   j unc t ion  i s  then  computed from 

6 

1 2 

I n  many cases of i n t e r e s t ,  

x = x  
j 

x1 = x and the re  i s  
j' 

no f ie ld-free  region  next   to   the  junct ion.   In   such 

cases,  n and J a re  matched a t   t h e  boundary x  and one 

obtains a set  of simultaneous  equations which may be 

readily  solved  as  before.  Even  when t h e   f i e l d  i s  not 

zero a t  x = x Eq. (3-3) may still be used t o  compute 

the   cu r ren t   a t   t he   j unc t ion   s ince  n(x .) = 0. 

2 '  

j' 

3 

(3-3)  
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A.  Necessary  Parameters 

When  variations  of  the  electric  field  and 

diffusion  coefficient  are  included,  the  continuity 

equation in the  steady  state  may  be  written 

L 

(3-4) 

Since  the  derivative  of D is  required,  the  function  based  on 

Irvin's  approximation  for  the  conductivity  which  was  used  in 

Section I1 will  no  longer  be  adequate  since  its  derivative  is  not 

continuous.  Therefore, a curve  was  fitted to experimental 

values  of  mobility vs impurity  concentration  using  smooth 

and  spline  subroutines  developed  for  another  application. 

From  these  subroutines,  a  third-order  expression  relating 

D to log NA  is  obtained  from  which  the  value  and  deriva- 

tive  of  the  diffusion  coefficient  may  be  easily  computed' 

at  any  point.  As  in  the  previous  section,  it is assumed 

that  donor  and  acceptor  impurities  scatter  electrons 

n 
11 

14 

n 
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equally efficiently so that  the electron mobility 

in n-type silicon can be used as  a basis for the 

calculation. However, the assumption that all impuri- 

ties are ionized is no longer necessary. The mobility 

curve used in  the calculations is shown in Fig. 6 to- 

gether with the experimental data from which it 

was derived. 

15-2 1 

The minority carrier lifetime in silicon is 

a slowly varying function of the impurity concentration. 

To obtain an estimate of the effect of this  variation  a 

simple relationship was assumed: 

log 7 = 1" '5 log N 
A' 

for cm-3 ,C N* lo2' A plot of EQ. (3-5) 

is  shown in Fig. 7 together with measured values of the 

lifetime reported by Ross and  Madigan. 22 Since the re- 

lationship is intended only to be qualitative, the 

agreement is not unreasonable, particularly at the lower 

concentrations. 

(3-5) 
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The  generation  of  electron  hole  pairs  is 

a  function of the  spectral  composition  of  the..source, 

the  absorption  of  silicon,  position  within  the  solar 

cell,  and  the  characteristics  of  the  surface of the 

cell. In applying Eq. (3-2) to  the  case  of  silicon 

solar  cells,  it  is  assumed  that  the  source  is  the  sun 

outside  the  earth's  atmosphere,  that  absorption  of 

radiation  is  the  same  in  n-  and  p-type  silicon  and  is 

independent of impuri.ty  density  for  the  spectral 

region  of  interest,  that  any  reflection  which  occurs 

at  the  surface  does  not  alter  the  spectral  composition 

of  the  radiation,  and  that  the  quantum  efficiency is 

constant  over  the  region  of  interest.  With  these 

assumptions,  the  numerical  values  given  by  Kleinman 

are  appropriate.  Over  most  of  the  cell,  the  ten-point 

Gaussian  quadrature  between 0.42 and 1.08 microns  de- 

scribed  by  Kleinman'  is  adequate.  However,  near  the 

front  surface  where  both  the  junction  and  the  drift 

fields  are  located  it  is  necessary to include  the  con- 

tributions  from  wavelengths  as  short  as 0.22 microns. 

The  correction  may  be  included  by  the  use  of  the  trapezoid 

6 
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rule  for  numerical  integration  and  Kleinman  gives 

the  necessary  numerical  quantities.  The  resulting 

generation  function  is  plotted  in  Fig. 8 as  cumulative 

percentage  of  photons  absorbed  at  a  distance  equal  to 

or  less  than  the  abscissa.  It  can  be  seen  that  nearly 

18% of  the  photons  are  absorbed in  the  thin  n-layer 

at  the  front  surface if  the  junction  is 0.3 microns 

deep.  Nearly  two  thirds  of  the  remaining  photons  are 

absorbed in the  first 10 microns  of  the  cell;  over  three 

fourths,  in  the  first 25 microns. In  the  second 2 5  microns, 

( 2 5 - 5 0 ~ ) ~  only  about 7% of  the  photons  are  absorbed  and 

in  the  second 50 microns (50-100~) only  about 5%. It 

is  thus  quite  clear  that  variations  designed to be  im- 

proved in  the  collection  efficiency  from  the  p-type  base 

region  must  occur  in  the  first 25 microns  of  the  cell  in 

order  to  have  a  significant  effect. 

6 

B. Constant ." Coefficient  Calculations 

Kleinman'  has  given  the  general  solution  to 

Eq. (3-4) when  E, D and T are  constants.  His  result  is 
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expressed in  terms  of the reduced variables y = n L / f T  

and 5 = x/L where L2 = DT and Q. is  the  total photon 

flux density absorbed in the cell. For the case of 

a p-type base  region  with  a field E, the  solution  is 

y = Aleo5 + A + F ( 5 ,  L,  E )  2 

where 

k T  d  In  NA 
E =  - 

42 dx 
? 

In this case, the impurity distribution must be exponential 
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i n   o rde r   t ha t   t he   f i e ld  E be  constant.  Therefore, 

i n -  Region 111, 

where N and N1 are  the acceptor   concentrat ions  a t  x 

and x respectively and w = x -x (see  Fig. 5 )  . Since 

2 2 

1 2 1  

NZ>N1,  t h e   f i e l d  E i s  posi t ive.  (It should be noted 

t h a t  Kleinman w r i t e s  the   solut ion of Eq. (3-4) f o r  6 

the  case of E # 0 expl ic i t ly   on ly   for  n-type material .  

Formally  the  results  are the same,but i n  t h i s  case 

u and p are  interchanged and & does  not  contain a 

minus s ign . )   I f  E = 0, (as i n  Regions I1 and I V )  t he  

solut ion  s implif ies  to 

y = ~ e 5  + ~e + F (  !i, L), 
- r  

1 2 

where 

s ince l in th i s   ca se ,  p = 0 = 1. The solut ion i s  obtained 
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simply by applying  the  boundary  conditions  discussed 

above in order to obtain  a  set of simultaneous  equations 

for  the  constants. 

The  results of these  calculations  are  similar  to 

those  of  Wolf  and  indicate  that  optimum  collection  occurs 
7 

when  the  field-free  region  next to the  junction  vanishes. 

Consequently,  only  this  case  was  considered  in  setting 

up  the  solution to the  more  general  case. 

C.  Exponential  Distribution  with  Variable  Diffusion 

Coefficient  and  Lifetime 

When  the  coefficients of Eq. (3-4) are  not  constant, 

it  is  not  possible to obtain  an  analytic  solution. In this 

case  it  is  necessary to replace  the  differential  equation 

by a difference  equation in  the  region  with  varying  impurity 

density.  Using  central  differences  and N + 1 pivotal  points, 
linear  algebraic  equations  are  obtained  in  the  form 

A n + A  n n-1,n  n-1  n,n  n + An+l,  n  n+l - *n n - (3-9) 
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for  each  of  the  points  x  in  this  region.  The  interval 

between  the  pivotal  points x is  h = - n N. The  interior 

N-2 of  these  equations  have  exactly  the  same  form  and 

n 
W 

may be written  down  directly.  If  the 

at  the  junction, n = 0, and  the  first 0 

equations  is 

point x is  taken 

of  the  set  of 

0 

A1, lnl 2 ,  ln2 + A  = B1 

At x = x two  additional  equations  are  formed  from  the 

continuity  of  n  and J across  the  boundary.  The  two 

additional  unknowns  are  and  the  undetermined  constant 

in  the  analytic  solution  for  the  electron  in  the  field- 

free  region (IV) . (Once  again,  the  condition  n = 0 at 

x = x is  used  to  determine  one  of  the  constants  in  the 

solution.)  Solution  of  the  equation  therefore is reduced 

to the  solution  of N + 1 simultaneous  equations  for N + 1 
unknowns.  This  solution  is  carried  out  on  a  high-speed 

digital  computer  using  a  subroutine  which  employs  the 

Gauss-Jordan  reduction  for  solving  the  set.  Once  the 

values  for  n  are  found  at  the N pivotal  points,  a  forward 

N' 

t 

(3-10) 
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difference  approximation  for - is used to evaluate dn 
dx 

the  electron  current  at  the  junction: 

(3-11) 
1 

1 1 
3h (n4 3 + - (n3 - 3n2 + 3nl) + - 4n + 6n2. - 4nl) + . . r] . 

Although  values of N as  high  as  45  have  been  employed, 

sufficient  accuracy  is  usually  obtained  with  considerably 

smaller  values. 

Results  of  these  calculations  for  several  cases 

of  practical  interest  are  shown  in  Fig. 9 plotted  as 

short  circuit  electron  current  density  vs  field  width. 

In all  these  cases  the  acceptor  concentration  at  the 

junction  was  taken  as 10 cm . Various  values  for  the 15 -3  

lifetime  and  substrate  concentration  were  assumed  as  noted. 

In  addition  the  value  of  short  circuit  current  computed 

with  no  drift  field  is  also  shown  in  Fig. 9 for  acceptor 

concentrations of l d 4  and 10 cm  and  .various  values 

of  lifetime.  All  numerical  values  of  current  are  based  on 

16 -3 
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a  total  photon  flux  density6  of 3 . 3  x cm-*  sec 

so that  the  maximum  electron  current  would  be  about 

40ma/cm2 if all  electrons  which  are  generated in  the 

330 micron  thick  base  region  were  collected. 

-1 

It  can  be  seen  immediately  from  these  results 

that  there  is an optimum  field  width  which  turns  out  to 

be roughly  twice  the  diffusion  length  for  the  shorter 

lifetimes.  The  magnitude  of  the  field  width is in all 

cases  as  significant  and in some  cases  much  more  important 

than  the  magnitude  of  the  aiding  drift  field  once  a  certain 

minimum  field has been  reached.  The  field  generated  by 

three-order  change in impurity  concentration  across  the 

width w is  sufficient to optimize  the  collection  ef- 

ficiency  if  the  proper  field  width  is  employed. 

While  this  result  has  been  obtained  by  mathe- 

matical  analysis,  it  seems  instructive to take  the  results 

of  Section I1 and  qualitatively  deduce  a  similar  conclusion. 
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I 

Let  it  be  assumed  that  all  carriers  that  are  gener- 

ated  closer  to  the  junction  than  the  diffusion 

length,  L,  will  be  collected,  while  any  carriers 

formed  further  away  than  L  will  recombine  before 

reaching  the  junction. If a field  is  now  superimposed 

between  x  and  x  (see  Fig. 5) , no  improvement  in 

collection  efficiency  will  be  observed  for  x 7 L + x 
since  all  of  those  carriers  originating  beyond L will 

1  2 

1 j 

still  recombine  before  arriving  at  the  junction.  If 

x  and  x  are  both  less  than L, then  some  improvement 

will  be  observed,  but  even  if  the  transit  time  across 

1 2 

the  distance  x  and  x  were  zero  and  if  x 

x = L + x  the  maximum  amount  of  carriers  collected 
would be  those  generated  between 0 and 2L  from  the 

1 2 1 = xj and 

2 j' 

junction. 

From  Fig. 1 it  can  be  seen  that  a  drift  field 

can  reduce  the  transit  time  by  a  factor  of  about 2 . 5  in 

the  case  where N = ~ m - ~ .  Therefore,  in  this  case, 1 

if  x  is  at  the  junction,  then  x  can  be  moved  out  for 1 2 

a  distance of 2.5 L and  provide  enough  velocity  enhancement 
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to  collect  everything  generated  within 2 . 5  L of 

the  junction. If  the  same  spacing  of 2 . 5  L is 

maintained  and  both x, and x, are  moved  a  small 
I 

distance AL, any  carriers 

and 2 . 5  L + AL would  have 

L 

originating  between 2 . 5  L 

to  travel in excess  of 2 .5  L 

to  reach  the  junction,  and  with  a  portion  of  that 

distance  without  benefit  of  the  built-in  electric 

field.  Since we  have  already  said  that  the  greatest 

distance  any  carrier  could go even  with  the  field  is 

2 . 5  L, it  follows  that  repositioning  the  field  to  start 

between 0 and 2 . 5  L will  only  reduce  the  number of 

carriers  collected.  Thus,  the  maximum  effectiveness 

of  the  field  occurs  when  it  starts  at  the  junction  and 

ends  (for  the  specific  case  being  considered) 2 . 5  L away. 

This  result  agrees  well  with  that  deduced  originally 

despite  the  drastic  simplifying  assumptions  made. 

As was  indicated  in  subsection  III-B,  a  field 

width of about 2 5  microns  results in optimum  collection 

efficiencies  at  longer  lifetimes (L > 2 5 v )  because  of 

the  form  of  the  generation  term  in Eq. (3-1). 
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D. Complementary  Error  Function  Impurity  Di.sgri.bution  With 

Variable  Diffusion  Coefficient  and  Lifetime 

In fabricating  drift  field  solar  cells,  the 

most  convenient  method  is to begin  with  a  p-type  sub- 

strate  with  acceptor  concentration N epitaxially 

deposit  a  thin  p-type  layer  with  acceptor  concentration 

2 '  

N &N2 on  one  side,  diffuse  the  impurity  across  the 

concentration  step  thus  formed  in  order to make  the 

1 

drift  field  and  then to form  the  p-n  junction  by  diffusing 

a  donor  a  shallow  distance  in  from  the  front  surface. In 

diffusing  across  a  concentration  step  with  the  same  im- 

purity  on  both  sides  the  resulting  distribution  is  not 

exponential.  Rather,it  is  given  by  the  relation: 23 

N -N 
N(y,t) = l erfc (y-R) + N l r  2 (3-12) 

where  R  is 1/2 .I, D is the  diffusion  coefficient  of 

the  impurity  being  used  at  the  diffusion  temperature, 

and  t is  the  time  of  diffusion.  The  origin  of  the y 
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coordinate is taken  at  the  step  and  y is positive 

in  the  direction  of  the  smaller  concentration. 

Therefore,  referring to Fig. 5 ,  y = x "x. In 
solving Fq. (3-4) for  this  case, R was first  defined 

by the  condition  that  the  acceptor  concentration  at 

the  junction  is  given  by N (greater  than  N  but  much 

less  than N2) t 

2 

0 1 

2 (No  -N1 
erfc (x2 - X.) * R  = 

3 N2-N1 

Then  a  width w is  defined  as  the  distance  between  the 

junction x and the  point  where N = a N a  being  nearly 

unity t 
j 2' 

2N,  (1-a) 
erfc (w + x - x2)* R = L 

j  N2-N1 - 

The  solution  proceeds  in  the  same  manner as in  the  pre- 

ceding  subsection  but  now  it  is  necessary  to  compute  the 

value  of  the  field  at  each  point  and to include  the  terms 

involving - ax - dE For several  reasons,  the  approximation  is 

(3-13) 

(3-14) 
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not   as   accurate   in  this case  as  it i s  in   t he   ca se  of 

cons tan t   f ie ld .  However, values of current  accurate 

to   several   per   cent   can be obtained i n  most cases.  

The r e s u l t s  of these  calculat ions show 

tha t   there  i s  only a s l ight   reduct ion i n  going from 

the  ideal ,   exponent ia l   case  to   the  real ,   erfc   case.  

That th i s  i s  not  unexpected  can  be  seen from Figs.  10 

and 11. Figure 10 shows that   the   impuri ty   concentrat ions 

i n  the two cases  are  not markedly d i f f e ren t  from each 

other   in   the  epi taxial   layer .   Further ,   a l though  the 

f ie ld   var ies   considerably i n  the   e r fc   case   as  shown i n  

Fig. 11, it i s  no longer  weakest i n   t he   r eg ion  where the  

concentration  differences  are most detremental  as it was 

i n  the   t rans is tor   case  of Section 11. 

I V .  USE OF DRIFT FIELDS TO ENHANCE RADIATION TOLERANCE 

I f  one assumes t h a t   i r r a d i a t i o n  by electrons  degrades 

the  l i fe t ime of the  solar   cel l   mater ia l   wi thout   affect ing 
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any  other  parameter, then  the  lifetime z may  be  re- 

lated  to  the  integrated  electron flux density @by 

the  following  relation: 7 

where T is the  initial  lifetime  in  the  material.  Wolf 

gives  a  value K = 3.2 x 10 cm  /sec  for 1 Mev  electrons. 

Using  this  value  and T = 10 sec, J ( 0 )  can  be  plotted 

against 0 as  is  done  in  Fig. 12. From  this  figure  it 

7 
0 

-9 2 

-5 
0 

follows  that  the  field  width  must  be  chosen so as  to  obtain 

the  desired  operating  condition  at  the  design  value of 

integrated  flux  density.  For  example,  if  the  maximum 

current  is  desired  at  integrated  flux  density  of 3 x 10 

electrons  per  cm2  a  field  width  of  about  12  microns  would 

16 

be  best. If it  is  desired  to  maximize  total  integrated  power 

output  during  irradiation,  the  shape  of  the  curves  suggests 

that  maximization  of  the  current  at  the  design  value  of 8 

will  accomplish  this  in  most  cases,  if  a  linear  irradiation 
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r a t e  i s  assumed, except in  those  regions  very  near 

t o  the cross-over of the  applicable  curves.  

This  analysis  has  been  concerned w i t h  co l lec t ion  

eff ic iency and shor t   c i r cu i t   cu r ren t .  There i s  evidence 

tha t   t he  open c i r cu i t   vo l t age  i s  a l so  degraded  under 

e l e c t r o n   i r r a d i a t i ~ n . ~ ~  The reasons  for t h i s  degradation 

and i t s  e f f e c t  on avai lable  power output from t h e   c e l l  

are  not known a t  t h i s  time. 

Only the  current  from the  p-type  base  region of the 

so l a r   ce l l   has  been  considered.  Since  nearly 18 per  cent 

of the  photons  are  absorbed i n  the 0.3 micron thick  n-type 

d i f f u s e d  reg ion   a t   the   f ront   sur face  of the ce l l ,   t he   ho le  

current from t h i s  region makes an  appreciable  contribution 

t o   t h e   t o t a l   c u r r e n t .  Computed curves of hole  current  vs 

integrated  f lux  densi ty   are   given  in   Fig.  13  f o r  two limit- 

ing  cases of the  surface  recombination  velocity. 
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I 

v . Conclusions 

From  the  analysis  above  it  is  possible to calculate 

the  expected  short  circuit  current  for  various  values  of 

drift  field  strength,  drift  field  width,  and  electron 

lifetime.  From  these  calculations  it is possible to 

conclude  that  when the variations  of  mobility  and  material 

lifetime  are  considered  the  inclusion  of  a  drift  field 

will  increase  the  collection  efficiency  of  a  silicon  n-on- 

p solar  cell  under  certain  specified  conditions. In order 

to maximize  the  increase  it is necessary  that: 

1. The  drift  field  should  be  as  near to 

the  junction  as  possible. 

2. The  width  of  the  drift  field  should  be 

approximately  twice  the  value  of  electron 

diffusion  length  at  the  design  value of 

lifetime  (or  integrated  flux  density)  or 
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about 25 microns  whichever  is  the 

shorter. 

The  following  points  also  should  be  noted.  First, 

increasing  the  ratio  of  impurity  concentration  at  the 

edges  of  the  drift  field  region  above 1000 does  not 

significantly  improve  the  collection  efficiency  for  most 

of  the  cases  considered.  This  is  in  contrast  to  the 

conclusion  reached  from  a  consideration  of  the  constant 

mobility  approximation  in  which  the  highest  ratios  yield 

the  greatest  collection  efficiencies.  Second,  the  case 

of  an  erfc  distribution  resulting  from  diffusion  across 

an  impurity  step  at  the  interface  of  an  epitaxial  layer 

and  substrate  can  be  approximated  quite  accurately  in 

the  cases  of  interest  by  an  exponential  distribution 

across  a  width  equal  to  the  thickness  of  the  epitaxial 

layer. 

In the  case  of  the  transistor  base,  it  can  be  con- 

cluded  that  an  opimium  field  configuration  exists  which 

results in a  minimum  base  transit  time  for  injected 

minority  carriers in  the  case  where  the  base  width is 

assumed  to  be  fixed  and  the  field  is  generated by a 
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gradient of the  majority  impurity  density in  the  base 

region. The  impurity  densities  required to generate 

fields  higher than  the optimum  are  sufficiently  large 

that  the  carrier  mobility is significantly  reduced  over 

a  region  of the  base and the  drift  contribution to the 

current  actually  becomes  smaller  with  increasing field. 

It should be  emphasized  that  the  highest  frequency 

response of a  transistor will not necessarily  result 

from the  use of the  optimum field configuration  for two 

reasons. First,  the  assumption  of  a fixed base  width 

is not necessarily  the  appropriate one in  the  design 

of  high  frequency devices. Second, effects  other  than 

the  base  transit  time  may  be  more  significant  in de- 

termining  frequency response. 
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Table I. Effect  of  background  impurity  on  transit time 

in a p-type silicon  transistor  base. 

N1km 
-3 

No(cm 
-3 

N C b  ) 
-3 

Distribution  t  (nanosec) 

10 17 LO 15 0 38.1 

10 

9 x 10 

15 

14 

14 -10 

0 

38.5 

37.7 

37.3 

10l8 0 exP 37.3 

10 10 
15 

37.5 

10 18 

1oI8 

10 15 

9 x 10 14 
-10 

0 

14 37.1 

36.6 

10 
15 

0 

10 

-10 

14 

14 

erf  c 

erf  c 

erf  c 

42.9  

43.2 

42.5 

10 
18 0 erfc 53.8 

10l8 10 l4  erfc 54 .O 

10l8 
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Figure 1. Computed t ransi t   t ime of electrons  in a p-type silicon  base  region 25 microns 
wide  assuming no recombination at 300°K. The  impurity  concentration  varies  exponentially 
as given  in Eq. (2-8) with Nc=O. Solid  Curves:  electron  mobility  determined  from 
impurity  contration at each  point (A, N 1  - 1014 ~ m ' ~ ,  B, N 1  - 1015 ~ m ' ~ ,  c, N 1  = 10 
cm-3, D, N 1  - 1017 ~-21-n'~). Dashed  curves:  electron  mobility  assumed  to  be  indepen- 
dent of impurity  concentration (1, Pn = 1250 cm2 volt'l sec", 2, P n  = 740 cm volt-' 
sec-lo 
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Figure 2. Computed t ransi t   t ime of electrons  in a p-type silicon  base  region 25 microns 
wide  assuming no recombination  at 300°K. Comparison of exponential and complementary 
e r r o r  function  distribution. (a) N l  = 1014 ~ r n - ~ ,  (b) N 1  - 1I!I5 c ~ n ' ~ .  
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Figure  3. Impurity  concentration  in a base region for exponential 'and complementary 
error  function  distributions  having  the same end points. The dis tance is normalized  to 
the base width.  The  background  impurity is assumed to be  very small. 
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Figure 4.  Electric  f ield  ( in  dimensionless  units)   for  the  distributions of Figure 3. 
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Figure  5. Schematic view of so1a.r   cell   configuration.  Front  surface at x = 0. Region 
I (0 s x < Xj) n-type  dirfused  region. Region I1 (xj 6 x < x 1) p - t ~ ~ ~ e  epitaxial reyion, no 
drift   f ield,  N A = N Region 111, (x 1 S x < x2) p-type  diffused  region, N 1 < Nil < Ng. 
Region I V  (x2 < x c xt) p-type  suhstrate,  no drift   f ield,  _"'Ti\ = N2. In the usua l  configur- 
ation - 0 . 3  microns  and xt = 330 microns .  In  many cases of interest ,  x1 = s. and 
region I1 vanislles. J 

F igu re  6.  Electron  mobility as a function of impurity  concentration.  It is assumed  that  
the  impuri t ies   may  be  e i ther   donors  or acceptors.   The  solid  l ine  is   computed  from 
smoothed  values of mobili ty.   Data  points  represent  experimental   results  for  electrons 
in  n-type  silicon  [based on conductivity  mobility: o Vi'olfstirn (Ref .  12); based  on Hall 
mobility: x Chapman, et a1 (Ref. 13), .t- Morin and  hIaita (Ref. 14), A Debye  and 
Kohane  (Ref. 15) and  p-type  silicon  based  on  drift  mobility: D Cronemeyer  (Ref. 16) ,  
0 Conwell  (Ref. 17), V Ludwig  and  U'atters  (Ref. ZR)] . 
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E'igure 7. Electron lifetime  in  p-tJpe silicon. The solid l ine i s  computed for Eq. (3-5). 
The  points are td<en from the data of Ross  and Madigan (Ref. 19). 

Figure 9. Cumulative  per  cent  absorption  in  si l icon computed f rom Eq. (3-2) using 
the  method and numerical values of Kleinnlan  (Ref. 6 ) .  The  values  xj and 3 
represent   customary  values  of junction  depth  and cell thickness  respectively.  
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Figure  9. Flectron  current   densi ty   computed from Fq.  (3-4) assuming an exponential 
distribution of impllri t ies  in  the dr i f t  field  region,  electron  mohilitl* a s  given in 
F ' i g r e  6 and  various  values of lifetime. The  value of computed from F:q. (3-5) is 
used at those points where it is smal le r   thm  the   va lue   spec i f ied .  In all cases the 
d r i f t  field extends to the  junction and the  acceptor  concentration  in Region IV is lOI7 
cm-3 (""), 1018 cm-3 ( ), 101') cm-3 (- - -): and 1020 cm-3 
(- - - -). Values of electron  current   densi ty  for cel ls   wi th NA = 1014 
~ r n ' ~  and 10'" ~ r n ' ~  arc given at the  lef t   s ide for var ious  l i fe t imes  in   the case where 
t h e r e  is no dr i f t  field. 

125 

I 



t 

.Figure 10. Impurity  concentration  in the expitaxial   layer of a so l a r   ce l l .  ‘I‘hz distance 
is normalized to the  thickness  of the  layer .  ‘The junction is at 5 = 0. ‘rhe 
distribution (erfc) obtained hy diffusion  across  a s t e p  at 5 = 1 into an epitaxial   layer 
with  initia.1  impurity  concentration lo1* cm-1  is compared  with an exponential  distribution 
(exp) 
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Figure 11. Electr ic   f ie lds   ( in   dimensionless   uni ts)   for . the  dis t r ibut ions of F igure  10. 
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F i g u r e  12. Effect of i r radiat ion by 1 Mev e lec t rons   on  the  shor t   c i rcu i t   e lec t ron   cur ren t  
of an n-on-p silicon solar cel l .   Curve 1: no  drift   f ield,  NA = 1016 cm-3 . Curve  2: 
no dr i f t   f ie ld ,  NA = lo1'' ~ r n ' ~ .  Curve 3: 25 micron  drift   f ield.   Curve 4: 12 micron 
drift   f ield.   Curve 3 :  5 micron  dr i f t  field. In   curves  3-5 the  drift   f ield is a r e s u l t  of 
an exponential  distribution of acceptors   varying  f rom cm'3 at the   jwct ion to 
10l8 ~ r n - ~  in  the  substrate .  
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cl Figure 13. Effect of i r radiat ion by 1 Mev electrons on the  short   c i rcui t   current  of an n-on-p sil icon  solar  cell  

I-J recombination  velocity. 

? with a diffusion  depth of 0 . 3  microns.   Curve 1: zero  surface  recombination  velocity.  Curve 2: infinite  surface c cn 


